Loading AI tools
Van Wikipedia, de vrije encyclopedie
Het oppervlaktetraagheidsmoment of kwadratisch oppervlaktemoment, foutief ook wel kortweg traagheidsmoment genoemd, is een eigenschap van constructiedelen die de weerstand tegen doorbuiging in een bepaalde richting bepaalt.
Het oppervlaktetraagheidsmoment (dimensie m4) wordt gebruikt bij sterkteberekeningen aan constructies. Het oppervlaktetraagheidsmoment moet niet worden verward met het (massa)traagheidsmoment (dimensie kg·m²), dat betrekking heeft op rotatiebeweging. Het heeft niets te maken met het begrip traagheid.
Het oppervlaktetraagheidsmoment van een object is niet afhankelijk van het toegepaste materiaal, maar alleen van zijn vorm en afmetingen. Welk oppervlaktetraagheidsmoment men in een specifiek geval moet gebruiken is afhankelijk van de belasting.
Het oppervlaktetraagheidsmoment van een doorsnede ten opzichte van een as in het vlak van de doorsnede is gedefinieerd als:
waarin de afstand is van het oppervlakte-element tot de as.
Zo is in het yz-vlak het oppervlaktetraagheidsmoment ten opzichte van de z-as:
In sommige, op technische toepassingen gerichte, literatuur wordt aangeduid als
De doorbuiging van een balk is omgekeerd evenredig met het oppervlaktetraagheidsmoment van betreffende balkdoorsnede en de elasticiteitsmodulus (de stijfheid); bij een geschematiseerde balk met een eenzijdige inklemming (uitkragende balk), de lengte en een puntlast op de vrije uiteinde geldt:
In de werktuigbouwkunde, industriële vormgeving, civiele techniek en bouwkunde zoekt men dan ook balken met een zo hoog mogelijk traagheidsmoment in de draagrichting met een laag materiaalverbruik. Een platte balk zal vrij veel doorbuigen. Een vierkante balk heeft een hogere en zal een stuk minder doorbuigen. Een I-profiel heeft een zeer grote , doordat een groot deel van zijn oppervlakte op een grote afstand tot het zwaartepunt ligt. De hoogte van de balk werkt namelijk tot de 3de macht mee terwijl de breedte van de balk tot de eerste macht meewerkt (zie de formule). Voor een rechthoekige balk is het traagheidsmoment Ix = 1/12 × breedte × hoogte tot de derde macht ().
De buigspanning in een balk is de normaalspanning ten gevolge van een buigmoment . Ze is afhankelijk van de verticale afstand tot de zwaartelijn, het buigmoment en het oppervlaktetraagheidsmoment . Ze wordt gegeven door de formule van Navier:
In onderstaande voorbeelden is telkens de afstand tot een as door het zwaartepunt. Met behulp van de Stelling van Steiner kan het moment rond een willekeurige as berekend worden.
Voor bijvoorbeeld een rechthoek met hoogte en breedte die verticaal belast wordt, is het oppervlaktetraagheidsmoment ten opzichte van een as in de breedterichting door het zwaartepunt (kies voor de berekening de oorsprong in het hoekpunt linksonder en de x-as in de breedterichting):
Beschrijving | Oppervlaktetraagheidsmoment |
---|---|
rechthoek met hoogte en breedte | |
cirkel met straal | |
halve cirkel met straal op de x-as | |
kwart cirkel met straal | |
ellips, met lange as en korte as | |
driehoek met basis en hoogte |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.