From Wikipedia, the free encyclopedia
Природни броеви се нарекуваат сите броеви коишто се цели и поголеми од нула. Тие ја формираат низата на природни броеви 1, 2, 3... . Сите членови на оваа низа го сочинуваат множеството на природните броеви кое е бесконечно и се означува со N. Претставено математички, множеството на природните броеви изгледа вака:
Најмалиот природен број е 1, а најголем не постои. Кога на множеството на природните броеви ќе му се додаде и нулата, се добива проширено множество кое се означува со N0. Претставено математички тоа изгледа вака:
Основната поделба на природните броеви е на парни и непарни. Парните броеви ја сочинуваат низата (2, 4, 6,... ,2n,...) и тие се делливи со 2, додека непарните броеви не се делливи со 2 и ја сочинуваат низата (1, 3, 5,... , 2n-1,...).
Збирот и производот на природните броеви е повторно природен број, додека разликата и количникот не секогаш се природен број. За еден природен број n велиме дека е деллив со друг природен број m ако и нивниот количник n/m — исто така природен број. Тоа математички се запишува вака: m|n и се чита n е деллив со m. Секој природен број кој има точно два делители, т.е. се дели само со 1 и со самиот себе, се нарекува прост број. Природните броеви коишто имаат повеќе од два делители се нарекуваат сложени броеви. Единствено бројот еден не спаѓа во ниедна од овие групи. Бројот 1 не е ниту прост ниту сложен број.
Следните аксиоми се познати под името Пеанови аксиоми, наречени така во чест на италијанскиот математичар Џузепе Пеано кој во 1889 год. математички ги определил природните броеви. Наједноставната, описна верзија е следната:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.