수학에서, 복소평면(複素平面)은 복소수를 기하학적으로 표현하기 위해 개발된 좌표평면으로 서로 직교하는 실수축과 허수축으로 이루어져 있다. 이것은 복소수의 실수부가 실수축에, 허수부가 허수축에 대응된 형태의 데카르트 좌표로 볼 수 있다.
복소평면의 개념은 복소수의 기하학적 해석을 가능하게 한다. 덧셈연산 하에서, 복소수들은 복소평면상에서 벡터처럼 더해진다. 두 복소수의 곱셈은 극좌표를 이용하면 쉽게 표현할 수 있다. 특히 복소수의 크기가 1인 복소수 간의 곱셈은 회전하는 것처럼 행동한다. 삼각함수의 덧셈정리에 의하여, 가 되어 회전한 결과와 같게 된다.
정의
복소수는 다음과 같이 정의하는 수이다.
- (, 는 실수, )
다시 말해, 하나의 복소수는 실수 두개로 이뤄진 하나의 순서쌍과 대응시킬 수 있다. 하나의 순서쌍은 좌표평면의 한 점으로 대응되기 때문에 복소수 역시 좌표평면상의 한 점으로 나타낼 수 있다. 일반적으로 실수부는 좌표로, 허수부는 좌표로 대응시킨다.
극좌표를 이용하여 를
라고 표현하며, 이 경우, 실수부와 허수부는 각각,
이다. 또한, 오일러의 공식을 이용하여
라고 쓴다.
원점과 점를 이은 직선과 실수축 사이의 각인 는 의 편각이라고 하며, 삼각함수는 주기가 이기 때문에 의 편각이 일때, (은 임의의 정수) 역시 의 편각이다. 편각 중에서 구간 (]에 있는 것은 유일하며, 특별히 주편각이라고 한다. 의 편각을 나타내는 기호는 이며, 주편각은 이다.
같이 보기
참조
- Flanigan, Francis J. (1983). 《Complex Variables: Harmonic and Analytic Functions》. Dover. ISBN 0-486-61388-7.
- Moretti, Gino (1964). 《Functions of a Complex Variable》. Prentice-Hall.
- Wall, H. S. (1948). 《Analytic Theory of Continued Fractions》. D. Van Nostrand Company. Reprinted (1973) by Chelsea Publishing Company ISBN 0-8284-0207-8.
- Whittaker, E. T.; Watson, G. N. (1927). 《A Course in Modern Analysis》 Four판. Cambridge University Press.
이 글은 수학에 관한 토막글입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다. |
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.