회문 소수(回文 素數)는 소수 중에서 회문(回文)이 되는 소수를 말한다. 예를 들어 11은 거꾸로 써도 11으로 자기 자신이 되는 회문수인데 소수가 되므로 회문 소수이다.
회문 소수는 다음과 같다. (OEIS의 수열 A002385)
- 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, …
특징
짝수의 자릿수를 갖는 회문 소수는 11뿐이다. 현재까지 알려진 가장 큰 수의 회문 소수는 2007년에 발견된 10180004 + 248797842×10 89998 + 1이다.
같이 보기
이 글은 수학에 관한 토막글입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다. |
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.