Remove ads
위키백과, 무료 백과사전
수학에서, 선택 공리를 추가한 체르멜로-프렝켈 집합론(選擇公理를追加한Zermelo-Fraenkel集合論, 영어: Zermelo–Fraenkel set theory with the axiom of choice, 약자 ZFC)은 공리적 집합론의 하나이다. 현대 수학의 표준적인 수학기초론으로 사용된다.
선택 공리를 추가한 체르멜로-프렝켈 집합론은 1차 논리를 기반으로 하는 1차 집합론이며, 등호 밖에 하나의 이항 관계 만을 가진다. 논의 영역은 집합들이다 (집합은 공리를 통해 묘사되기만 할 뿐 직접적으로 정의되지는 않는다). 이항 관계 는 "가 의 원소"라고 읽는다.
는 각각
를 줄여 쓴 것이다.
선택 공리를 추가한 체르멜로-프렝켈 집합론의 공리계는 다음과 같은 공리 7개 및 공리꼴 2개로 정의된다. 이들은 통상적인 1차 술어 논리 공리들에 추가로 가정한 것이다.
체르멜로-프렝켈 공리계(ZF)는 ZFC에서 선택 공리를 제외한 것이며, 체르멜로 공리계(Z)는 ZFC에서 선택 · 정칙성 · 치환 공리(꼴)를 제외한 것이다.
확장공리와 정칙성 공리는 ZFC에서 쓰이는, 집합의 기본적인 성질들을 나타낸다. 즉, 집합은 순서 및 다른 추가 성질을 갖지 않는 구조이며 (확장성), 스스로를 포함하거나 기타 재귀적인 포함 관계를 가지지 못한다 (정칙성).
분류·치환 공리꼴과 짝·합집합·멱집합 공리들은 주어진 집합으로부터 새로운 집합을 구성하는 방법들을 정의한다. 즉, 이미 구성된 집합들로부터, 이들의 순서쌍·합집합·멱집합을 정의할 수 있으며, 또한 이미 구성된 집합에 주어진 성질을 만족시키는 부분집합을 취하거나 (분류 공리꼴), 함수에 대한 상을 취할 수 있다 (치환 공리꼴).
여기에서 한정 기호 는 을 줄여 쓴 것이다. 즉, 성질 를 만족하는 가 유일하게 존재함을 말한다.
여기에서 는 를 줄여 쓴 것이다.
무한 공리와 선택 공리는 ZFC 공리계에서 비교적 더 논란이 되는 공리들이다. 무한 공리는 가산 무한 집합의 존재를 가정하며, 여기에 멱집합을 취하여 더 큰 무한 기수와 순서수들을 정의할 수 있다. 선택 공리에 따르면, 무한한 수의 집합들에서 각각 하나의 원소를 무작위로 고를 수 있는데, 이 때 고르는 방법은 명시되지 않으며, 일부 경우 명시할 수 없음을 보일 수 있다.
여기서 이며, 공리 1부터 6까지를 이용해 임의의 집합 에 대해 가 유일하게 존재함을 증명할 수 있다. 은 공집합으로, 위의 공리들을 이용해 만약 집합이 하나라도 존재한다면 공집합이 유일하게 존재함을 증명할 수 있다. 정칙성 공리에 따라 항상 이므로, 이는
를 의미한다. 이들은 각각 자연수로 정의할 수 있다.
그렇다면, 이 공리는 자연수의 집합 의 존재를 의미한다. (만약 자연수를 다른 방법으로 정의하고 싶으면, 치환 공리꼴을 사용하여 이를 다른 정의로 번역할 수 있다.)
여기서 는 의 모든 원소들의 합집합이며, 합집합 공리에 따라 존재한다.
ZFC의 논의 영역은 집합만을 포함하며, 고유 모임을 포함하지 않는다. 모임을 직접적으로 다루려면 폰 노이만-베르나이스-괴델 집합론이나 모스-켈리 집합론을 사용하여야 한다.
ZFC의 모든 집합은 집합으로 구성되어 있으며, 원자(영어: atom, urelement)를 갖지 않는다. 또한, ZFC의 집합은 정칙적이다. 즉, 정칙성 공리에 의하여
또는
와 같은, 무한히 재귀적인 집합이 존재할 수 없다.
체르멜로-프렝켈 집합론의 일부 공리들은 서로 독립적이지 않다. 예를 들어, 나머지 공리들로부터 짝 공리를 유도할 수 있다.
증명:
멱집합 공리에 따라, 집합 이 존재한다. 임의의 집합 가 주어졌을 때, 다음과 같은 논리식 를 생각하자.
(이는 집합론의 언어 이외의 기호를 사용하지만, 집합론의 언어의 기호만을 사용하도록 번역할 수 있다.) 는 를 자유 변수로 가지며, 의 원소에 대하여 유일한 집합을 대응시킨다. 치환 공리꼴에 따라, 와 의 상을 원소로 포함하는 집합이 존재한다. 의 상은 이며, 의 상은 이다.
다음과 같은 이론들은 에 대하여 상대적으로 무모순적이지만 그 역은 성립하지 않는다.
이며,
이다.[1]:149, IV.30[2] 여기서 는 페아노 공리계이며, 는 체르멜로-프렝켈 집합론에서 무한 공리를 생략한 것이다. 따라서, (만약 가 무모순적이라면) 는 보다 무모순성에 따르면 더 강력하다. 물론, 이다.
마찬가지로, 다음이 성립한다.[1]:132, Theorem IV.6.5
여기서 는 에서 멱집합 공리를 제거하고, 대신 "모든 집합이 가산 집합이다"를 추가한 것이다. 사실, 이다. 여기서 은 유전적 가산 집합들의 집합이다.
마찬가지로, 다음이 성립한다.[1]:123, Theorem IV.3.13
여기서 는 에서 무한 공리를 제거하고, 대신 그 부정을 추가한 것이다. 사실, 이다.[3][4] 여기서 는 유전적 유한 집합들의 집합(즉, 폰 노이만 전체의 번째 단계)이다.
마찬가지로, 다음이 성립한다.[5]:110, Theorem II.2.2
여기서 는 에서 치환 공리꼴을 그 부정으로 대체한 것이다. 사실, 이다.[6]
모스-켈리 집합론(영어: Morse–Kelley set theory) MK는 ZFC의 무모순성을 증명할 수 있어 ZFC보다 더 강한 이론이다.[5]:152, Exercise II.10.2 사실, MK의 유한한 수의 정리들을 공리들로 하는 이론 에 대하여,
이며, 특히 인 경우
이다.
만약 ZFC가 무모순적이라면, ZFC는 도달 불가능한 기수(및 기타 큰 기수)의 존재를 증명할 수 없다. 이는 ZFC+도달 불가능한 기수의 존재로부터 ZFC의 무모순성을 증명할 수 있기 때문이다. 사실,
인데, 이는 도달 불가능한 기수 에 대하여 이기 때문이다.
마찬가지로, ZF+약하게 도달 불가능한 기수의 존재는 ZFC의 무모순성을 보일 수 있다.
ZFC는 공리꼴(영어: axiom schema)을 포함하고 있으므로, 실제로는 무한히 많은 수의 공리들로 이루어져 있다. 리처드 몬터규는 1961년에 ZFC도 ZF도 (만약 무모순적이라면) 유한개의 공리로는 대체될 수 없음을 증명했다. 사실, ZFC의 유한 부분 이론 에 대하여, 항상
이다.[5]:131, Corollary II.5.4 반면, 폰 노이만-베르나이스-괴델 집합론(NBG)은 유한 개의 공리로 공리화할 수 있다.
1890년대의 칸토어 역설의 발견과 1901년의 러셀의 역설의 발견으로, 엄밀한 수학기초론의 필요성이 대두되었다.
1904년에 에른스트 체르멜로는 정렬 정리를 증명하기 위하여 선택 공리를 도입하였다. 1908년, 에른스트 체르멜로는 최초의 공리적 집합론인 체르멜로 집합론을 발표했다.[7] 그러나 체르멜로 집합론은 순서수를 구성하기에 부족하였다. 구체적으로, 체르멜로 집합론에서는 알레프 수 를 정의할 수 없다. 또한, 체르멜로의 분류 공리꼴(독일어: Axiom der Aussonderung)에는 "명확한"(독일어: definit) 성질이라는 표현이 포함되어 있었는데, 이 개념은 엄밀하게 정의되지 않았다.
1907년에 러시아의 수학자 드미트리 미리마노프(러시아어: Дми́трий Семёнович Мирима́нов)는 집합의 정칙성의 개념을 정의하였고, 이 성질이 체르멜로의 공리계로부터 유도되지 않는다는 사실을 지적하였다.
1910년에 헤르만 바일은 "명확한" 성질을 1차 논리로 정의할 수 있는 성질로 정의하였다.[8] 1922년에 토랄프 스콜렘 또한 같은 제안을 하였다.[9]
또한, 1922년에 아브라함 프렝켈[10]과 스콜렘[9] 은 체르멜로의 공리계에 치환 공리꼴(독일어: Ersetzungsaxiom)을 추가하였다. 존 폰 노이만은 여기에 집합의 정칙성을 표현하는 정칙적 공리를 추가하여 ZFC를 완성하였다.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.