숄레스키 분해(Cholesky decomposition)는 에르미트 행렬(Hermitian matrix), 양의 정부호행렬(positive-definite matrix)의 분해에서 사용된다. 촐레스키 분해의 결과는 하삼각행렬과 하삼각행렬의 켤레전치 행렬의 곱으로 표현된다.
프랑스의 수학자 앙드레루이 숄레스키(프랑스어: André-Louis Cholesky)가 실수 행렬에 대해 발견했다.
이는 효율적인 수치해석에서 유용하게 사용되며, 몬테 카를로 시뮬레이션(Monte Carlo Simulations)에서도 유용하다. 선형 방정식 시스템을 푸는 실제 응용에서, 촐레스키 분해가 LU 분해와 비교했을 때 약 두 배 정도 효율적인 것으로 알려졌다.[1]