Loading AI tools
위키백과, 무료 백과사전
소인수분해(영어: prime factorization, integer factorization)는 1보다 큰 자연수를 소인수(소수인 인수)들만의 곱으로 나타내는 것 또는 합성수를 소수의 곱으로 나타내는 방법을 말한다. 소인수분해를 일의적으로 결정하는 공식은 아직 발견되지 않았다. 현대 암호 처리에서 소인수분해의 어려움은 중요한 기준이 된다.
산술의 기본 정리(fundamental theorem of arithmetic)에 의해 모든 양의 정수는 소수들의 곱으로 표현하는 방법이 (곱셈의 교환법칙을 제외하면) 유일하게 존재한다. 그러나 산술의 기본정리는 그 소인수분해를 하는 방법을 알려주지는 않는다. 단지 존재성을 확인해 줄 뿐이다.
현대의 전자기 기반 컴퓨터상에서 소인수분해에 대한 다항식 시간 알고리즘은 알려져 있지 않다. 단, 이론적인 양자컴퓨터에서의 다항식 시간 소인수분해 알고리즘 (쇼어의 알고리즘)은 존재한다. 하지만 아직까지 어떤 합성수를 다항 시간 안에 소인수분해하기는 어려운 문제이며, 예를 들어 193자리 수(RSA-640)는 5개월간 30개의 2.2 GHz 옵테론 CPU를 동원하여 소인수분해 되었다. 소인수분해의 난해함은 RSA와 같은 현대 암호의 핵심적 부분이 된다.
고전적인 소인수분해 알고리즘은 대부분 페르마 소정리를 확장한 것을 이용한다. 그중 자주 사용되는 알고리즘은 아래와 같다.
암호학의 발달과 함께 소인수분해 방법도 발전해 왔으며 그중 가장 효율적인 알고리즘들을 간추리면 아래와 같다.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.