Loading AI tools
다양한 저널리즘 데이터를 수집하고 분석하여 출간하는 행위 위키백과, 무료 백과사전
데이터 저널리즘(영어: Data Journalism)이란 저널리즘으로 만들어 낸 창조물을 뒷받침하기 위해 데이터를 수집, 갈무리, 조직, 분석, 시각화, 출간하는 행위다.[1] 단순히 통계 수치를 활용하는 것을 넘어 데이터 분석을 통해 새로운 사실을 찾아내어 보도하는 것이다.[2]거대 데이터를 수집하여 분석하고, 현상과 사건을 좀 더 심층적이고 과학적으로 분석한다.[3]
온라인으로 기사를 읽는 시대에 신문기사들의 구독력을 올릴 수 있는 방안 중 하나로 데이터 저널리즘이 꼽힌다. 언론매체가 차별성을 확보할 수 있는 전략이다.[4]
대한민국의 데이터 저널리즘은 권력과 정부에 대한 감시, 비판에 초점을 맞추고, 영국과 미국에선 의료 체계, 빈곤 문제 등 사회 기반 시스템에 주목한다.[5]
2000년대 들어서 빅데이터가 부각되며 데이터 저널리즘이 회자 되기 시작했는데, 이 용어는 소프트웨어 개발자인 에이드리언 홀로바티(Adrian Holovaty)[1]가 "컴퓨터 프로그래밍을 통한 저널리즘(Journalism via computer programming)"을 명명한 것을 시초로 본다.[6] 이후 2010년 www의 창시자 팀 버너스 리(Tim Berners Lee)가 데이터 분석이 저널리즘의 미래라고 언급하면서 전 세계적으로 확산됐다. 그는 정부 데이터를 인터넷에 올려 인반인들에게 공개해야 한다는 내용의 연설을 하는 도중 이를 언급했다.[1]
데이터 저널리즘이 주류 담론으로 떠오른 것은 2014년으로, 이 해에 뉴욕타임스, 워싱턴 포스트, 네이트 실버의 파이브서티에이트닷컴, 복스 미디어의 복스닷컴이 데이터 저널리즘을 실현했다.[1]
현재는 정부, 산업계, 연구, 소셜 미디어 등 사회 모든 부분에서 데이터가 대량 생산 돼 지고 있다. 이 덕분에 데이터 저널리스트들은 무료 온라인 툴, 오픈소스 소프트웨어를 이용해 데이터를 다룰 수 있으며, 인터랙티브 기능, 모바일 앱, 지도 등을 이용할 수 있다.[1] 기본적인 통계 이용을 넘어 스프레드시트를 활용하고, 더 복잡한 데이터 분석과 시각화를 시도한다. 궁극적으로 컴퓨터화된 저널리즘과 명령어, 프로그래밍까지 도달하게 됐다.[1]
데이터 저널리즘에서의 보도는 데이터가 주체이기 때문에, 그 데이터 자체에 오류가 있다면 거기서 나온 정보들은 신뢰할 수 없는 것이 된다. 데이터 오류에는 표집의 한계가 있다. 데이터가 모집단일 경우에는 정확한 분석을 할 수 있지만, 그렇지 않은 불완전한 데이터일 경우에는 신뢰성이 떨어지게 된다.[7]
데이터 저널리즘에서 사용하는 시각화가 모바일에서 잘 작동되지 않아 독자에게 기사의 의미를 온전히 전달하지 못하는 문제가 있다. 데이터 저널리즘은 방대한 데이터를 정리하고, 이를 독자에게 쉽게 전달하기 위해 주로 시각 효과를 이용한다. 이 시각 효과는 웹에선 잘 작동하지만, 모바일에서는 잘 구동하지 않는다. 기사를 쉽게 표현해줄 시각화가 모바일에서 호환하기 어렵기 때문에 개발자, 디자이너를 통해 별도의 페이지를 구성하게 된다. 이는 기존 뉴스 유통 플랫폼과의 접근성에는 좋지 않다.[8]
정보공개법의 확대, 공공 데이터 개방, 오픈소스 증가 등으로 기자가 현장에 나가지 않고도 활용할 수 있는 데이터가 많아졌다.[13] 이때문에 국내에서도 데이터를 이용한 기사들이 많이 나오고 있다.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.