Loading AI tools
위키백과, 무료 백과사전
미분기하학에서 내부곱(內部곱, 영어: interior product)은 벡터장과 미분 형식 사이에 정의되는, 일종의 대수적 미분 연산이다. 기호는 또는 .
매끄러운 다양체 위의 내부곱
은 벡터장과 미분 형식을 곱하여 미분 형식을 만드는 연산이며, 다음과 같이 두 가지로 정의될 수 있다. (는 간혹 로 표기되기도 한다. 이에 대응하는 유니코드 기호는 U+2A3C ⨼이다.)
위의 내부곱
은 다음 세 조건을 만족시키는 유일한 연산이다.
위의 내부곱
은 임의의 차 미분 형식 에 대하여 다음과 같이 정의되는 연산이다.[1]:§5.4.3[2]:43, Exercise 3.3
임의의 미분 형식 및 두 벡터장 에 대하여, 다음이 성립한다.
특히,
이다.
카르탕 마법 공식(Cartan魔法公式, 영어: Cartan’s magic formula)에 따르면, 임의의 벡터장 와 미분 형식 에 대하여 다음이 성립한다.
여기서 은 리 미분이다.
또한, 임의의 두 벡터장 및 미분 형식 에 대하여, 다음이 성립한다.
내부곱의 개념과 용어(독일어: inner Produkt)는 헤르만 그라스만이 도입하였다.[3]:§4.1, 107–112
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.