Loading AI tools
위키백과, 무료 백과사전
함수해석학에서 균등 유계성 원리(均等有界性原理, 영어: uniform boundedness principle) 또는 바나흐-스테인하우스 정리(Banach-Steinhaus定理, 영어: Banach–Steinhaus theorem)는 바나흐 공간 위의 일련의 유계 작용소들에 대하여, 점별 유계성이 균등 유계성과 동치라는 정리이다.
실수 바나흐 공간 및 실수 노름 공간 사이에 일련의 유계 작용소들 가 존재한다고 하자. 그렇다면, 균등 유계성 원리에 따르면 다음 두 조건들이 서로 동치이다.
여기서 는 작용소 노름이다.
균등 유계성 원리로부터 다음과 같은 따름정리를 쉽게 증명할 수 있다.
바나흐 공간에 대한 균등 유계성 정리는 베르 범주 정리를 사용해 다음과 같이 간단히 증명할 수 있다.
베르 범주 정리를 사용한 증명:
스테판 바나흐와 후고 스테인하우스가 1927년에 증명하였다.[2] 한스 한 또한 같은 정리를 독자적으로 발견하였다.[3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.