Loading AI tools
위키백과, 무료 백과사전
입자물리학(粒子物理學, particle physics)은 보통 물질과 방사선 등 자연의 기본 입자를 연구하는 물리학의 분야 중 하나이다. 현재의 해석으로는 입자는 양자장을 가지고 있으며 역학에 따라 상호작용한다는 것이다. 비록 입자라는 단어가 많은 물체를 뜻하지만(양성자, 기체 입자, 심지어는 가정의 먼지 등), 입자물리학이라는 용어는 보통 우주의 기본 입자 물체를 연구하는 것을 의미한다. 이는 입자 관찰을 설명하고 정의하기 위해 필요하며, 다른 중요 분야와의 조합으로는 설명할 수 없는 분야이다. 기본 장과 역학의 현재 설정은 표준 모형이라는 이론으로 요약되어 있으며, 입자물리학은 크게 표준 모형을 구성하고 있는 입자 연구와 가능한 확장 연구로 나뉜다.
현대 입자물리학 연구는 전자, 양성자, 중성자(양성자와 중성자는 중입자로 불리며 쿼크로 이루어져 있음)같은 아원자 입자 연구와, 광자, 중성미자, 뮤온 뿐만이 아닌 넓은 범위의 이질적 입자의 방사성 감쇠와 산란 연구 등 두 가지에 초점을 맞추고 있다.
구체적으로, 입자라는 용어는 입자물리학이 양자역학의 지배를 받기 때문에 고전역학에서는 잘못된 용어이다. 따라서, 특정한 상황에서 파동이 입자같은 성질을 띌 때와 같은 파동-입자 이중성 현상을 설명할 수 없다. 보다 기술적 측면에서, 힐베르트 공간의 양자 상태벡터로 설명하며, 이 공간은 양자장론에서 처리하고 있다. 입자물리학의 규칙에 따라, "기초 입자"는 전자나 광자같은 잘 알려진 유형의 입자뿐 아니라 파동 속성을 가지고 있는 입자도 포함되어 있다.
모든 입자와, 그 입자와 상호작용하는 입자는 양자장론에 따라 기술되며 표준 모형 내에 있다.[1] 표준 모형에는 총 61개의 기본 입자가 있다.[2] 이 기본 입자들은 합쳐져서 상위의 입자가 될 수 있으며, 1960년대 이후에 이런 상위 입자들 수백개가 발견되었다. 표준 모형은 현재까지 거의 모든 실험에서 맞는 것으로 판단하고 있다. 그러나, 대부분의 입자들은 자연적으로는 불완전히 설명되며, 모든 것의 이론 같은 더욱 근본적인 이론 개발을 기다리고 있다. 최근 몇 년 동안, 중성미자의 질량 측정 결과 표준 모형과 실험적인 오차가 있는 것이 확인되었다.
역사적으로 볼 때 탈레스의 질문에서 나온 생각, 즉 모든 것은 물이다라는 명제가 구체적인 형태-"모든 물질은 불로되어 있다"는 철학자 헤라클레이스토스의 주장에서 근본한 것이라 추정되기도 하여 과학보다는 철학에 가까웠던 시절이다.-의 과학의 시작이라고 볼 수도 있지만 근대적인 의미에서의 과학은 갈릴레오 갈릴레이의 이론에서부터 시작했다고 할 수 있다.
모든 물질에 대한 생각은 적어도 기원전 6세기부터 기본 입자로 구성되어 있다는 생각이 나왔다.[3] 원자론에 대한 철학적 교리와 소립자의 본성은 레우키포스, 데모크리토스, 에피쿠로스 등 고대 그리스 철학자들이 연구하기 시작했다. 카나다, 디그나가, 다르마키르티 등의 고대 인도 철학자, 이븐 알하이삼, 이븐 시나, 가잘리 등의 무슬림 과학자들, 가상디, 보일, 뉴턴 등의 근대 초기 유럽의 과학자 들도 연구했다. 빛의 입자설은 이븐 시나, 이븐 알하이삼, 뉴턴, 가상디 등이 지지했다. 이런 초기 아이디어들은 실험이나 경험적 증거보다는 추상, 철학에 가까웠다.
19세기 돌턴은 자신의 이론인 화학양론을 이용하여 자연의 요소 각각이 고유한 한 종류의 입자로 구성되어 있다는 결론을 내렸다. 돌턴과 그의 동시대인들은 자연은 기본 입자로 구성되어 있다고 믿었고 이 이름을 그리스어로 "나눌 수 없는"을 의미하는 'atomos'를 딴 'atoms'이라는 이름을 붙였다.[4] 그러나, 이 세기 후반에 물리학자들은 사실 원자가 가장 작은 기본 입자가 아니며 더 작은 입자가 있다는 것을 발견했다. 20세기 초 핵물리학 및 양자역학의 절정에 달할 때 1939년 마이트너가 한의 실험에 기반을 두어 핵분열을 증명하고, 같은 해 베테가 핵융합을 증명했다. 이 발견은 다른 원자로부터 한 원자를 만들어내는 산업을 활성화시켰고, 수익성은 없지만 크라에소포에아도 가능하다. 또한, 이같은 발견으로 핵무기 개발을 주도했다. 1950년대부터 60년대까지 충돌 실험으로 다양한 입자들이 발견되었다. 이것으로 인해 입자 동물원이라는 용어가 붙었다. 이 용어는 1970년대 많은 수의 입자가 상대적으로 적은 기본 입자로 설명할 수 있는 표준 모형이 발견되면서 사용하지 않게 되었다.
입자 물리학 뿐 아니라 모든 물리 법칙은 복잡한 사실을 단순한 설명으로 묶는 작업이었다. 이런 맥락에서 물리학은 통일 이론의 추구라고 할 수 있다. 뉴턴 역학은 천체 물리학과 지표면의 낙하 운동의 통일 이론이고, 맥스웰의 전자기 이론은 전기와 자기를 통합한 이론이다. 또한 표준 모형은 전자기력과 약한 상호작용을 통합한 이론이므로 전약력의 이론이라고도 한다.
현재 가장 큰 이슈가 되고 있는 통일 이론은 대 통일 이론(Grand Unified Theory:GUT)라고 불리는 것으로, 표준 모형의 모든 힘을 하나의 힘으로 통합하는 것이다. 표준모형의 기반이 리 대수의 변환성질이므로 더 큰 단순 리대수로 힘을 기술하는 작업이라 할 수 있다.
여기에 중력까지 통합하는 이론을 가칭 모든 것의 이론(Theory of Everything:TOE)라고 한다. 이에 대한 후보로 끈이론이 있다.
입자물리학의 실험은 기본입자를 찾는 일이다. 기본적으로 현대의 입자 실험 물리학은 어니스트 러더퍼드의 산란 실험을 확장한 것이다. 즉 아주 속도가 높은 입자를 대상이 되는 물질과 충돌시켜서 발생하는 파편들을 분석하고 거꾸로 재구성한 뒤 대상 물질의 구조를 알아내는 것이다. 더 작은 구조를 알기 위해서는 더욱 속도가 높은 입자들이 필요하다. 이를 위해 입자 가속기를 사용하는데, 더 빠른 속도를 얻기 위해서는 더 큰 가속기가 필요하다. 현재 가장 큰 입자 실험 장치는 스위스와 프랑스의 국경에 있는 유럽 입자 물리 연구소(CERN)이다. 이 실험장치는 원형으로 생겼으며 지름이 8km에 이른다.
세계에 있는 실험기관들은 다음과 같다:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.