From Wikipedia, the free encyclopedia
ವಿದ್ಯುತ್ಕಾಂತತೆ (Electromagnetism) ಎಂದರೆ ವಿದ್ಯುಚ್ಛಕ್ತಿ ಮತ್ತು ಅಯಸ್ಕಾಂತಕ್ಕೆ ಇರುವ ಸಂಬಂಧಗಳನ್ನು ವಿವರಿಸುವ ಭೌತಶಾಸ್ತ್ರದ ವಿಭಾಗ. ಇದು ಮುಖ್ಯವಾಗಿ ವಿದ್ಯುತ್ ಪ್ರವಾಹವು ಕಾಂತಕ್ಷೇತ್ರವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ ಹಾಗೂ ಬದಲಾಗುವ ಕಾಂತಕ್ಷೇತ್ರವು ವಿದ್ಯುತ್ ಪ್ರವಾಹವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ ಎಂಬ ವಿಚಾರದ ಮೇಲೆ ಬೆಳೆದು ಬಂದಿದೆ.
ಕೂಲಂಬ್ನ ನಿಯಮ ತಿಳಿಸುವುದೇನೆಂದರೆ, ಕಣಗಳ ನಡವಿನ ವಿದ್ಯುತ್ ಪ್ರವಹಿಸುವಿಕೆಯ ಒಟ್ಟು ಬಲವು (force)
F α [(Q1*Q2)/R2] R = Distance/ದೂರ K = Constant of Proportionality F = K[(Q1*Q2)/R2)] k = (1/4πε) ε = εο*εr
ಎರಡು ಬಿಂದು ಆವೇಶಗಳನ್ನು (point charge) ಪರಿಗಣಿಸಿ (Q1, Q2 ಆಗಿರಲಿ). ಈ ಎರಡು ಕಣಗಳ ನಡುವೆ ಅಂತರವಿರಲಿ. Q1 ಹತ್ತಿರ Q2 ಆವೇಶವನ್ನು ತಂದಾಗ, ಅದು ಒಂದು ರೀತಿಯ ಬಲಕ್ಕೆ (force) ಗುರಿಯಾಗುತ್ತದೆ. ಯಾವಾಗ Q2 ಈ ರೀತಿಯ ಬಲಕ್ಕೆ ಗುರಿಯಾಗುತ್ತದೊ ಆ ಪ್ರದೇಶ Q1 ಆವೇಶಕ್ಕೆ ಒಳಪಟ್ಟಿರುತ್ತದೆ. ಈ ಆವೇಶ ಕಣದ (Q1) ಸುತ್ತಲೂ ಇರುವ ಪ್ರದೇಶವನ್ನು "ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರ" (Electric field) ಹಾಗೂ ಅದರ ಸುತ್ತಲೂ ರೂಪುಗೊಂಡಿರುವ ಆಕರ್ಷಣ ಬಲವನ್ನು "ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರದ ತೀವ್ರತೆ" (Electric field intensity) ಎಂದು ಕರೆಯುತ್ತಾರೆ.
F = [(Q1*Q2)/(4πεο*R2)]à à = vector direction E = [Q1/(4πεο*R2)]à ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರದ ತೀವ್ರತೆ (E) = (Force/unit charge) ಅಥವಾ (ಬಲ / ಇಂತಿಷ್ಟು ಪ್ರಮಾಣದ ಆವೇಶ)
ಬಲವನ್ನು 'ನ್ಯೂಟನ್' ಎಂಬ ಏಕಮಾನದ ಸಹಾಯದಿಂದ ಅಳೆಯುತ್ತಾರೆ. ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರವನ್ನು ನ್ಯೂಟನ್/ಕೂಲಂಬ್ ಅಥವಾ ವೋಲ್ಟ್/ಮೀಟರ್ ಇಂದ ಅಳೆಯುತ್ತಾರೆ.
ವಿದ್ಯುತ್ ಕಣಗಳ ಚಲನೆಯು ಹೆಚ್ಚು ಇರುವ ಕಡೆಯಿಂದ ಕಡಿಮೆ ಇರುವ ಕಡೆಗೆ ಹರಿಯುತ್ತದೆ. ಹೀಗೆ ಹರಿಯುವ ಕಣಗಳು ಯಾವಗಲೂ ಧನಾತ್ಮಕ ಆವೇಶಗಳಿಂದ (positive charges) ಋಣಾತ್ಮಕ ಆವೇಶಗಳಲ್ಲಿ (Negative charges) ಕೊನೆಗೊಳ್ಳುತ್ತದೆ.
ಈ ರೀತಿ ಚಲಿಸುವ ಕಣಗಳನ್ನು ಒಂದು ಮೇಲ್ಮೈ ಪ್ರದೇಶದ (surface area) ಮೇಲೆ ಹರಿಸಬೇಕು. ಈ ಮೇಲ್ಮೈ ಹರಿದು ಬಂದ ಒಟ್ಟು ವಿದ್ಯುತ್ ಕಣಗಳು ವಿದ್ಯುತ್ ಪ್ರವಾಹದ ಸಾಂದ್ರತೆಯನ್ನು ಸೂಚಿಸುತ್ತದೆ.
ಇದನ್ನು 'D' ಎಂಬ ಅಕ್ಷರ ಬಳಸಿ ಸೂಚಿಸುತ್ತಾರೆ.
D = Ψ/S ; Ψ = ಕಣಗಳ ಹರಿವಿನ ಮೊತ್ತ; S = ಮೇಲ್ಮೈ ಪ್ರದೇಶದ ವಿಸ್ತೀರ್ಣ
ಇದನ್ನು coulomb/sq.m (C/m2) ಎಂಬ ಏಕಮಾನದ ಸಹಾಯದಿಂದ ಅಳೆಯುತ್ತಾರೆ.
ಕೆಲವು ಆವೇಶಗಳಿಂದ ಮುಕ್ತ ಜಾಗದಲ್ಲಿ (Free space) ವಿದ್ಯುತ್ ಪ್ರವಹಿಸುತ್ತದೆ ಎಂದು ಪರಿಗಣಿಸಿ. ವಿಭಿನ್ನ ಮೇಲ್ಮೈ ಪ್ರದೇಶದ ಒಂದು ಬಿಂದು 'P' ಆಗಿರಲಿ. ಈ ವಿಭಿನ್ನ ಮೇಲ್ಮೈ ಪ್ರದೇಶ (Differential surface area) ಮೂಲಕ ವಿದ್ಯುತ್ ಪ್ರವಹಿಸುವಂತೆ ಮಾಡಿ (dΨ). ವಿದ್ಯುತ್ ಪ್ರವಹಿಸುವಿಕೆಯ ಸಾಂದ್ರತೆಯ (D) ದಿಕ್ಕು ಮತ್ತು ವಿದ್ಯುತ್ ಹರಿಯುತ್ತಿರುವ ಸಾಲು (Flux Lines) 'P' ಬಿಂದುವಿನಲ್ಲಿ ಒಂದೇ ದಿಕ್ಕಿನಲ್ಲಿರುತ್ತದೆ.
ಆದ್ದರಿಂದ, ವಿದ್ಯುತ್ ಪ್ರವಾಹದ ಸಾಂದ್ರತೆಯ ದಿಕ್ಕು (D) ಮೇಲ್ಮೈ ಪ್ರದೇಶದಕ್ಕೆ ಸಾಮಾನ್ಯವಾಗಿರುತ್ತದೆ (Normal).
D = dΨ/dS (C/m2); dΨ = ಒಟ್ಟು ವಿದ್ಯುತ್ ಹರಿಯುವಿಕೆ
dS = ವಿಭಿನ್ನ ಮೇಲ್ಮೈ ಪ್ರದೇಶ
ಒಂದು ಪರಿಪೂರ್ಣವಾಗಿ ಮುಚ್ಚಲ್ಪಟ್ಟಿರುವ ಮೇಲ್ಮೈ ಪ್ರದೇಶವನ್ನು ಪರಿಗಣಿಸಿ, ಆ ಪ್ರದೇಶದಲ್ಲಿರುವ ಒಟ್ಟು ಆವೇಶದ ಮೊತ್ತ (Total charge) 'Q' ಕೂಲಂಬ್ಸ್ ಆಗಿರಲಿ. ಆದ್ದರಿಂದ ಈ ಮೇಲ್ಮೈ ಮೇಲೆ ಪ್ರವಹಿಸಿದ ಒಟ್ಟು ವಿದ್ಯುತ್ 'Q' (Total flux) ಆಗಿರುತ್ತದೆ.
ಒಂದು ಗೋಳಾಕಾರದ ವಸ್ತುವನ್ನು (sphere) ತೆಗೆದುಕೊಳ್ಳಿ, ಅದರ ತ್ರಿಜ್ಯ (radius) 'r' ಆಗಿರಲಿ. ಆವೇಶ ಕಣ (+Q) ಆಗಿದ್ದು, ಅದು ಗೋಳದ ಮಧ್ಯ ಭಾಗದಲ್ಲಿದೆ. +Q ಬಿಂದುವಿಗೆ ಹೊರಗಿನಿಂದ ಬಂದ ಒಟ್ಟು ವಿದ್ಯುತ್ ಪ್ರವಾಹವೂ, +Q ನಿಂದ ಹೊರಹೋದ ಒಟ್ಟು ವಿದ್ಯುತ್ ಪ್ರವಾಹಕ್ಕೆ ಸಮನಾಗಿರುತ್ತದೆ.
ಮುಚ್ಚಿದ ಮೇಲ್ಮೈ ಪ್ರದೇಶಕ್ಕೆ
Ψ = ʃ D.dS = Q
ರೇಖಾ ಆವೇಶಗಳಿಗೆ
Ψ = ʃ ᑭl.dL = Q
ಮೇಲ್ಮೈ ಆವೇಶಗಳಿಗೆ
Ψ = ʃ ᑭs.dS = Q
ಘನಗಾತ್ರ ಆವೇಶಗಳಿಗೆ
Ψ = ʃ ᑭv.dV = Q
ಗಾಸ್ನ ನಿಯಮದ ಅನುಸಾರ
Q = ʃ D.dS
ಒಂದು ಮೇಲ್ಮೈ ಮೂಲಕ ಹರಿದ ವಿದ್ಯುತ್ ಪ್ರವಾಹವೂ, ಚದುರಿ (ಸ್ಥಾನಪಲ್ಲಟಗೊಂಡು), ಆ ಮೇಲ್ಮೈನ ವಿವಿಧ ಭಾಗಗಳಿಂದ ಹೊರಬರುತ್ತದೆ. ಹೀಗೆ ಹೊರಬಂದ ವಿದ್ಯುತ್ ಪ್ರವಾಹವೂ, ಮೊದಲು ಪ್ರವಹಿಸಿದ ವಿದ್ಯುತ್ ಪ್ರವಾಹದಷ್ಟೇ ಇರುತ್ತದೆ.
ಗಾತ್ರ ಅನುಕಲವಾಗಿ ಪರಿವರ್ತಿತವಾದ ಮೇಲ್ಮೈ ಅನುಕಲ
ʃ D.dS = ʃ( ᐁ.D) dV
ಒಂದು ಧನಾತ್ಮಕ ಆವೇಶವನ್ನು (positive charges) ಪರಿಗಣಿಸಿ (+Q). ಅದರ ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರವೂ E ಆಗಿರಲಿ. ಧನಾತ್ಮಕ ಆವೇಶವನ್ನು ವಿದ್ಯುತ್ಕಾಂತೀಯ ಕ್ಷೇತ್ರದ ಒಳಗೆ ಇಟ್ಟಾಗ, ಅದು ತನ್ನ ಸ್ಥಾನದಿಂದ ಚಲಿಸಲು ಪ್ರಾರಂಭಿಸುತ್ತದೆ. ಇದಕ್ಕೆ ಕಾರಣ ವಿಕರ್ಷಣ ಬಲ (Force of Repulsion)
ಈ ಚಲಿಸುವಿಕೆಯನ್ನು Qt ಎಂದು ತಿಳಿಯೋಣ. ಅವಾಗ dL ಅದು ಚಲಿಸಿದ ಒಟ್ಟು ದೂರವಾಗಿರುತ್ತದೆ. aL ಅದು ಚಲಿಸುತ್ತಿರುವ ದಿಕ್ಕು.
ಕೂಲಂಬ್ನ ನಿಯಮದ ಪ್ರಕಾರ
F=Qt.E ನ್ಯೂಟನ್
ಹಾಗಾಗಿ, ಧನಾತ್ಮಕ ಆವೇಶ Qt ಇಂದ ಈಗಿನ Qt ವರೆಗೆ ಕ್ರಮಿಸಿದ ದೂರ, ಇವೆರಡನ್ನು ಪರಿಗಣಿಸಿ ಒಟ್ಟು ಕೆಲಸದ ಪರಿಮಾಣವನ್ನು ತಿಳಿಯಬಹುದು.
ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರವಿಲ್ಲದಂತಹ ಒಂದು ಖಾಲಿ ಜಾಗದಲ್ಲಿ, Q1 ಎಂಬ ಆವೇಶವನ್ನು, ಅನಂತ ದೂರದಿಂದ (Infinite distance) ತಂದು ಖಾಲಿ ಜಾಗಕ್ಕೆ ಹಾಕಿರಿ (Empty space). ಈಗ ಆ ಆವೇಶ ನಿರ್ದಿಷ್ಟ ಸ್ಥಾನದಲ್ಲಿರುತ್ತದೆ. ಕಾರಣ ಆ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಬೇರಾವುದೇ ಆವೇಶಗಳು ಲಭ್ಯವಿರುವುದಿಲ್ಲ.
ಈಗ ಇನ್ನೊಂದು ಆವೇಶ Q2 ಅನ್ನು ತಂದು Q1 ಇರುವ ಖಾಲಿ ಜಾಗಕ್ಕೆ ಹಾಕಿರಿ. ಈಗ ಅಲ್ಲೊಂದು ವಿದ್ಯುತ್ ಕ್ಷೇತ್ರವು Q1 & Q2 ಗಳನ್ನು ಬಳಸಿಕೊಂಡು ರೂಪುಗೊಳ್ಳುತ್ತದೆ. ಈಗ Q1, Q2 ಚಲಿಸಲಾರಂಭಿಸುತ್ತವೆ.
ಹಾಗಾಗಿ ಆದ ಕೆಲಸ
potential (ವಿಭವ)= ಆದ ಕೆಲಸ / ವಿಸ್ತೀರ್ಣ work done per unit area (W/Q)
Work done (ಆದ ಕೆಲಸ) W = potential * charge (ವಿದ್ಯುತ್ ಪ್ರವಹಿಸುವಿಕೆ)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.