Loading AI tools
ウィキペディアから
数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が挙げられる。
全単射であることを1対1上への写像[上への1対1写像] (one-to-one onto mapping)あるいは1対1対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。
写像 f が全単射のとき、f は可逆であるともいう。
写像 f: A → B に対し、2つの条件
がともに成り立つとき、写像 f は全単射 (bijective) であるという。この用語はブルバキによる。
f: A → B が全単射であることは、
が成り立つことと等価である。実際、全射と単射の定義を合わせれば、全射の定義における存在記号 を唯一存在記号 に置き換えればよいことがすぐに分かる。
全射でも単射でもない |
単射であり全射でない |
全射であり単射でない |
全単射 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.