Loading AI tools
ウィキペディアから
カー・ニューマン解(カー・ニューマンかい、英語: Kerr‐Newman metric、Kerr‐Newman solution)あるいはカー・ニューマン・ブラックホール解とは、一般相対性理論のアインシュタイン方程式の厳密解の一つで、回転する電荷を帯びたブラックホールを表現する軸対称時空の計量 (metric)である。このため、カー・ニューマン計量とも呼ばれる。ニュージーランドの数学者ロイ・カー (Roy Kerr)によるカー解の発見の2年後の1965年に、アメリカのニューマン (Ezra T. Newman) らによって発見された。質量・角運動量・電荷の三つのパラメータを持つブラックホール解として、一般相対性理論の描く時空の姿の理解に広く使われている。
一般相対性理論 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
アインシュタイン方程式 | ||||||||||||
入門 数学的定式化 関連書籍 | ||||||||||||
| ||||||||||||
カー・ニューマン計量は、次のように書ける。
ここで、
であり、
である。ここでは、光速と万有引力定数を1とする幾何学単位系()を用いている。
電荷がゼロ () の場合、この解はカー解を再現する。角運動量がゼロ () の場合、この解はライスナー・ノルドシュトロム解 (Reissner-Nordstrom解) を再現する。そして、電荷も角運動量もゼロの場合、シュヴァルツシルト解 (Schwarzschild解) を再現する。カー解と同様に、この計量がブラックホールとして理解されるのは、パラメータが のときである。その他、計量としての特徴は、カー解の項を参照されたい。
ブラックホール脱毛定理 (no-hair theorem) において、すべての現実的なブラックホールは、いずれ、角運動量・質量・電荷の3つの物理量のみを持つカー・ニューマンブラックホールに落ち着くと考えられている。また、「アインシュタイン・マクスウェル方程式での軸対称定常解は、カー・ニューマン解に限られる」というブラックホール唯一性定理 (uniqueness theorem) も存在する。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.