カントール代数 “Weak distributivity, a problem of von Neumann and the mystery of measurability ”, Bulletin of Symbolic Logic 12 (2): 241–266, MR2223923, http://www
決定性公理 Mycielski, Jan; Świerczkowski, Stanisław (1964). “On the Lebesgue measurability and the axiom of determinateness”. Fund. Math. 54: 67–71. doi:10.4064/fm-54-1-67-71
ミルトン・フリードマン 1952), pp. 612–625 JSTOR "The Expected-Utility Hypothesis and the Measurability of Utility", with Leonard Savage, 1952, Journal of Political Economy
ジョゼフ・L・ドゥーブorg/article/AIF_1973__23_3_187_0.pdf. Doob, J.L. (1975). “Stochastic process measurability conditions”. Annales de l'Institut Fourier 25 (3–4): 163–176. doi:10
量子力学の数学的定式化 と同時正規直交基底 ( e j ) j = 1 ∞ {\displaystyle (e_{j})_{j=1}^{\infty }} の組を可測構造(measurability structure)つきのヒルベルト空間族というH13: 任意のλ∈Xと任意の相異なるj, k ∈ Nに対し、 ⟨ e j ( λ )