Loading AI tools
ウィキペディアから
数学の一分野である圏論における群の圏(ぐんのけん、英: category of groups)Grp は、群すべてからなる類を対象の類とし、群準同型を射とする圏。作り方からこれは具体圏を成す。代数学における群論は、この圏の研究であるとみなすこともできる。
Set を集合の圏、Mon をモノイドの圏として、群の圏 Grp からの二種類の忘却函手 M: Grp → Mon(群から可逆構造を忘れたモノイドを対応させる函手)および U: Grp → Set(群からその台集合を取り出す函手)を考えよう。
このうち M は二つの随伴函手を持つ。それは、右随伴 I: Mon → Grp と左随伴 K: Mon → Grp だが、具体的に I: Mon → Grp は各モノイドにその可逆元全体の成す部分モノイドを対応させる函手であり、また K: Mon → Grp は各モノイドにそのグロタンディーク群を対応させる函手である。
もう一方の忘却函手 U: Grp → Set は左随伴として各集合にそれが生成する自由群を対応させる自由函手を持つ。各集合にそれが生成する自由モノイドを対応させる自由函手を F とすれば、U の左随伴は合成函手 KF: Set → Mon → Grp に等しい。
アーベル群の圏 Ab は群の圏 Grp の充満部分圏であるが、Ab がアーベル圏を成すのに対し Grp は非アーベルである。実際に、Grp は二つの群準同型の「和」を定義する自然な方法が存在しないから、加法圏ですらない。
実例として、三次対称群 S3 上の自己準同型全体の成す集合 E ≔ Hom(S3, S3) を考えよう。E は位数 10 である(そのうちの一つの元は、任意の元を単位元に写す零準同型 z であり、E の任意の元に z を左または右から掛けるとその積は z に等しい。三つは、位数 2 の部分群(これが全部で三つある)への射影であり、これらは各々同じ側から何度掛けても自分自身となるような元になる。残りの六つは自己同型となる)。仮に Grp が加法圏であったならば、この集合 E は位数 10 の環(自己準同型環)を成さなければならない。任意の環において零元 0 はその任意の元 x に対して 0⋅x = x⋅0 = 0 を満たす元(吸収元)として規定されるものであるから、E の零元は零準同型 z がそれであるはずである。しかし、E のどの二つの非零元も掛けて z になることはないから、つまり E は零因子を持たない有限環でなければならないことになる。ウェダーバーンの小定理により、零因子を持たない有限環は有限体であるが、有限体の位数は必ず素数の冪でなければならないから、位数 10 の E は有限体ではありえない。これは不合理。
群の圏 Grp において完全系列の概念が意味を成し、アーベル圏論におけるいくつかの結果、例えば9項補題や5項補題およびそれらの帰結が Grp において成立する。他方、蛇の補題は Grp では成り立たない。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.