Loading AI tools
測定結果などを表す数字のうち、位取りを示すだけのゼロを除いた意味のある数字 ウィキペディアから
有効数字(ゆうこうすうじ、英語: significant figures, significant digits)とは、測定結果などを表す数字のうちで、位取りを示すだけのゼロを除いた意味のある数字である[1]。 誤差を含む桁より上の桁を指す[2]。
有効数字の桁数の例を示す。
0でない数字に挟まれた0は有効である。例えば、
0以外の数字より右にある0は有効である。例えば、
小数点がない数の最後にある0については、有効であるとも有効でないとも受け取れ、曖昧である。例えば、1 000 の有効数字は1桁から4桁のどれとでも受け取れる。このように、整数(小数点がない数)の下位に続いている0を有効数字と見るかどうかは、その文脈によってまちまちである。
この曖昧さは数の後に小数点を置くことで解決できる。例えば、"1 000." と記せば、有効数字4桁であることを意味する[3]。
また、有効数字が何桁であるかを明示するためには、科学的記数法を用いることもできる。
なお、有効と見なさない位取りの数字0も重要である。例えば、'0.005' に用いられている0は有効数字とは見なさないが、その桁を表すためには依然として不可欠なものである。
n 桁の有効数字で丸めるのは、端数処理での一形式である。
n 桁の有効数字で丸めるという作業は、単に n 桁に丸めるというだけではなく、異なるスケールの数字を統合して取り扱う点でより重要な技法である。
浮動小数点表示は、コンピュータ上での有効数字表現に丸める典型例である。
2桁の有効数字に丸める場合、
n 桁の有効数字に丸める際の問題点は、n 桁目の数字が必ずしも明確とは限らない点である。これは、整数部にある0(小数点より左にある0)について発生する問題である。上記の最初の例では、12 300 を丸めれば 12 000 になるが、丸めた後の 12 000 だけを見れば、有効数字は2桁から5桁までのいずれにも受け取れるので、何桁目の数字を丸めたのか不明確となる。
丸めのレベルを明示するときに科学的記数法を用いれば、あいまいさを減らすことができる。例えば、上の例で 1.2 × 104 とすれば、有効桁数は2桁であると明示できる。
丸めのレベルは、例えば、"20 000 to 2 s.f."(significant-figures の略語)のように有効桁数が2桁であると特別に明示することも可能である。最後の有効数字に下線を引く("20000" など)という方法もあるが、さほど一般的でない。
いかなる場合にも最良なアプローチは、不確かさと明確さを分けて記述することである。例えば、 20 000 ± 1% という書き方をすれば、有効数字のルールを適用しなくても明瞭な記述ができる。
もし、短距離走者が 100 mを 11.71秒で走ったら、平均の速さはいくらになるだろうか? 電卓で距離を時間で割ると 8.539 709 65 m/s という値が出てくるが、この値をそのまま記述するのは不適切である。
仮に 100 m が完全に正しい値であり、11.71 秒の最下位の桁に不確かさがあって、11.705 秒以上 11.715 秒未満の値を丸めたもの、すなわち 11.710(5) 秒であるとしよう。 時間の相対不確かさは 0.005 s / 11.71 s = 4.3 × 10−4 [注釈 1]であり、これがそのまま速さの不確かさに伝播する。 その絶対値は 8.53970965 m/s × (4.3 × 10−4) = 4 × 10−3 m/s であるため、不確かさを含めた速さは 8.540(4) m/s となり、有効数字のみ(不確かさのない小数点以下第二位まで)を記すと 8.54 m/s となる。 もし距離の方も不確かさを含むのであれば、速さの不確かさは更に大きくなる。たとえば不確かさが 0.5 m の場合、合成した相対不確かさは となり、不確かさを含めた速さは 8.54(4) m/s となる。
もし答えの精度が重要でないならば、正確に分かっていない桁も続けて 8.5397 m/s のように記すのが安全である。
しかし、有効数字のルールを厳格に適用すれば、8.539 709 65 m/s という表記は 10 nm/s の桁まで速度が分かっていることを意味する。このような表記は、測定精度に比べて不適切な書き方である。この場合、有効数字3桁 (8.54 m/s) で結果を報告すれば、速度は 8.535 m/s以上、8.545 m/s未満であるのだと分かってもらえる。
同様に、1000 mを53.7秒で走った場合の平均のスピード[注釈 2]について、18.621 973 9 m/s という値を用いるのは不適当であり、有効数字3桁として、18.6 m/s とする。
数値は、読みやすいように丸められることがよくある。「18.148% と 35.922% を比べよ」というよりも、「18% と 36% を比べよ」というほうが、相手に通じやすい。
同様に、予算を眺める際に、
部署A: $185 000 部署B: $ 45 000 部署C: $ 67 000
となっているほうが、次のように書かれているよりも理解するにも比べるにも簡単である。
部署A: $184 982 部署B: $ 44 689 部署C: $ 67 422
曖昧さを減らすには、データを最も近い桁数の単位にして記すこともよく行われる。
収益(単位: 千ドル): 部署A: 185 部署B: 45 部署C: 67
有効数字に注意して計算する際には、重要なポイントがある。乗除算をするときは、有効桁数を測定値の中で最も有効桁数が少ないものに合わせるという点である。
以下のように厳密に求まっていたり定義されている値については、有効桁数を少なくとも気にすることはない。あくまでも、測定の不確かさが存在する測定値の有効桁数を生かすのが、有効数字の概念(不確かさの桁の明示)だからである。
なお、上述のような定数とは異なり、物理定数でも万有引力定数のようなものには有効桁数がある。なぜなら、これらは物理的に測定された値から求められた数値だからであり、有効数字のルールが適用される対象となる。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.