単因子
ウィキペディアから
定義
要約
視点
D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)とする。また Mn×m(D) を D 成分の n×m 行列全体とし、特に m = n のときは、これを Mn(D) と表すことにする。すべての行列 A ∈ Mn×m(D) は、ある可逆行列 P ∈ Mn(D) と Q ∈ Mm(D) を使って次の形に変形できる[1]。
ここで e1, …, er ≠ 0 かつ e1D ⊇ … ⊇ erD である。このような e1, …, er は単数倍を除いて一意に定まり[2]、これを行列 A の単因子という。右辺の行列は A のスミス標準形 Smith normal form[3] あるいは単因子標準形と呼ばれる。 この行列 P, Q は行列の基本変形を積み重ねることにより求められる[4]。
性質
F を体とする。
例
要約
視点
D を複素係数の一変数多項式環 C[x] とする。次の行列 A ∈ M2(C[x]) の単因子は可逆行列 P, Q ∈ M2(C[x]) として以下の行列を取れば 1, (x − λ)2 とわかる。
脚注
参考文献
関連項目
外部リンク
Wikiwand - on
Seamless Wikipedia browsing. On steroids.