半単純成分

ウィキペディアから

半単純成分

加群論環論の文脈において、 R 上の加群 M の半単純成分[1] (: socle) 、台[2][注釈 1]、底[3]、または台座[4]とは、M のすべての(非零)極小部分加群の和と定義される[1]。これは加群の根基双対概念と考えることができる。集合の記号で書けば

soc(M) = Σ { N | NM単純部分加群 }.
Thumb

同じことであるが[5]

soc(M) = ∩ { E | EM本質部分加群 }.

R の半単純成分は環の2つの集合の一方を指す。R を右 R 加群と考えて soc(RR) が定義され、R を左 R 加群と考えて soc(RR) が定義される。これらの半単純成分はいずれも両側イデアルであるが[6]、一致するとは限らないことが知られている[注釈 2]

性質

群の socle

脚注

参考文献

関連項目

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.