リーマンのクシー関数

ウィキペディアから

リーマンのクシー関数

数学において、リーマンのクシー関数(リーマンのクシーかんすう、: Riemann Xi function)はリーマンのゼータ関数の変形で、とりわけ単純な関数等式をもつように定義される。関数はベルンハルト・リーマンに敬意を表して名づけられている。

Thumb
複素平面におけるリーマンのクシー関数 ξ(s). 点 s の色は関数の値を表している。より暗い色は 0 により近い値を表し、色相は値の偏角を表す。

定義

要約
視点

リーマンのもともとの小文字のクシー関数、ξエトムント・ランダウによって大文字のクシー Ξ に改名された(下記参照)。ランダウの小文字クシー ξ は次のように定義される[1]s C に対して

ここで ζ(s)リーマンのゼータ関数を表し、Γ(s)ガンマ関数である。クシーの関数等式(あるいは reflection formula英語版)は

である。大文字のクシー Ξ は Landau (loc. cit., §71) によって

と定義され、関数等式

をもつ。Landau (loc. cit., p. 894) によって報告されているようにこの関数 Ξ はリーマンがもともと ξ によって表記した関数である。

偶数に対する一般式は

である、ただし Bnn 番目のベルヌーイ数を表す。例えば

である。

級数表現

要約
視点

クシー関数は級数展開

をもつ、ただし

であり、この和はゼータ関数の非自明な零点 ρ|Im(ρ)| の順番で渡る。

この展開は Li's criterion英語版 においてとりわけ重要な役割を果たす。その主張は、リーマン予想はすべての正の n に対して λn > 0 であることと同値であるというものである。

アダマール積

単純な無限積展開は

ただし ρξ の根を走る。

展開の収束を保証するには、積は零点の "matching pairs" 上でとられなければならない、すなわち ρ1 − ρ の形の零点のペアの因子は一緒にグループされなければならない。

関連項目

脚注

関連文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.