ヒルベルト多項式
ウィキペディアから
ウィキペディアから
可換環論における次数環あるいは次数加群のヒルベルト多項式(ヒルベルトたこうしき、英: Hilbert polynomial)は、その(次数環あるいは次数加群の)斉次成分の次元の増加率を測る一変数多項式である。次数付き可換環 S のヒルベルト多項式の次数および最高次係数は、射影代数多様体 Proj S の次数および次元に関係がある。
体 K 上の有限次元空間 S1 から生成される次数付き多元環
のヒルベルト多項式とは、すべての(しかし有限個の)正の整数 n に対して
を満たす、ただひとつの有理係数多項式 HS(t) のことである。つまり、すべての(しかし有限個の)自然数 n に対する値が(ふつうはそういう風には言わないが、多項式補間という形で)多項式によって与えられるような場合の「ヒルベルト函数」という意味で、これを「ヒルベルト多項式」と呼ぶ。
次元の値は整数であるから、ヒルベルト多項式は整数値多項式 (numerical polynomial) である。しかし、ヒルベルト多項式が整係数多項式となるのは極めて稀である (Schenck 2003, pp. 41)。
同様に有限生成次数加群 M のヒルベルト多項式 HM も(少なくとも M が正の次数付けを持つならば)定義することができる。
環 S が次数 1 の成分で生成されない場合にも、S 上の有限生成加群 M のヒルベルト函数はまだ定義可能だが、もはや多項式であるとは限らない。M のヒルベルト–ポアンカレ級数は M の次数付き成分の次元の母函数として定義される。M がよい性質を持つならば、ヒルベルト-ポアンカレ級数は有理函数となる (Eisenbud 1995, Chapter 10)。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.