Loading AI tools
ウィキペディアから
体論において、ノルム (norm) は、体の拡大(とくにガロア拡大などの代数拡大)に付随して現れる写像の一種で、拡大体の元をもとの体の元に移す性質を持つ。
体の有限次元拡大 L / K に対し、L の元 α のノルム NL/K(α) は以下のように定義される。
K の L を含む代数閉包 Ka を固定し、σi : L → K a (1 ≤ i ≤ n) を K の元を固定する相異なる中への同型の全体とするとき
ここで、[L:K]i は非分離次数である。
L を複素数体 C, K を実数体 R とすると、R の代数閉包は C であり、R を固定する C の自己同型は恒等写像と複素共役をとる写像の 2 つであるから、任意の複素数 α = a + ibに対して
が拡大 C / R に関する α のノルムである。
有限群 G と G 上の加群 M に対して、写像
を G-加群 M のノルム写像という。x の "ノルム"
は G の作用に対して不変である。すなわち、M の G-不変な元全体のなす部分加群を MG とあらわすと Im(NG) ⊂ MG が成り立つ。
ガロア拡大 L / K に対して、乗法群 L* をガロア群 G = Gal(L / K) 上の加群と見なすとノルム写像 NG は拡大のノルム NL/K となる。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.