ゲノミクス(英: genomics、ジェノミクス)とは、ゲノムと遺伝子について研究する生命科学の一分野。ゲノム学(ゲノムがく)、ゲノム科学(ゲノムかがく)とも。
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年6月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
ゲノミクスは1980年代に現れ、1990年代のゲノムプロジェクトの開始とともに発展した。初めて完全長のゲノムが解読されたのはバクテリオファージFX174 (5,368 kb) で1980年のことである。自由生活生物としてはインフルエンザ菌で1995年。以来、猛烈な速さでゲノム解読が進行している。ヒトゲノムのおおまかな配列はヒトゲノムプロジェクトによって2001年前半に解読されている。
ポストゲノムプロジェクトのゲノミクスとして、さまざまな生物種のゲノムを比較することで、進化の解明を試みる比較ゲノミクスや、RNAiなどによる遺伝子阻害から、全体論的な機構解明を行う機能ゲノミクスなどがある。ゲノミクスではバイオインフォマティクスや遺伝学、分子生物学をツールとして用いるとともに、システム生物学のツールとしても用いられる。またゲノミクスは医療の分野に新たな治療法を提供してきている(ファーマコゲノミクス)。食品(ニュートリゲノミクス)や農業の分野へも応用される。
ゲノム解析
ある生物が対象に選ばれた後、次の三つの段階を経る。:シーケンシング、アセンブリ、アノテーション。[1]
シーケンシング
歴史的に見ると、初め、シーケンシングはシーケンシングセンターという中央集中型の施設(一年に数十テラ塩基の配列決定をおこなうJoint Genome Instituteのような巨大独立行政法人に囲まれた施設)で行われていた。そこには高価な実験器具や技術サポートを必要とする研究室が集まっていた。しかし、塩基配列決定技術が進歩し、十分に高速なベンチトップ型のシーケンサーができると、平均的なアカデミックラボでもシーケンサーを使えるようになってきた。[2][3]
全体的に見て、ゲノムシーケンシングの手法は二つに区分される。ショットガンシーケンシングとハイスループットシーケンシング(いわゆる、次世代シーケンシング)である。 [1]
アセンブリ
配列アセンブリは大量のDNA配列断片をアライメントし、繋ぎ合わせ、オリジナルの配列を再構築することである。[1] [4]
アノテーション
アセンブリされたDNA配列は、さらに追加の解析がなされないとほとんどの場合価値はない。[1] ゲノムアノテーションはDNA配列に生物学的情報を付加し、意味付けするプロセスである。
このプロセスは三つのステップからなる。[5]
- ゲノムの非コード領域部分を同定する。
- タンパク質をコードする遺伝子など、何らかの機能を持つと推測される領域を同定する。(gene prediction)
- これらの要素に生物学的情報を付加する。
出典
関連項目
外部リンク
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.