Loading AI tools
Da Wikipedia, l'enciclopedia libera
Un processo di Poisson, dal nome del matematico francese Siméon-Denis Poisson, è un processo stocastico che simula il manifestarsi di eventi che siano indipendenti l'uno dall'altro e che accadano continuamente nel tempo. Il processo è definito da una collezione di variabili aleatorie per che vengono viste come il numero di eventi occorsi dal tempo 0 al tempo Inoltre il numero di eventi tra il tempo e il tempo è dato come ed ha una distribuzione di Poisson. Ogni traiettoria del processo (ovvero ogni possibile mappa da a dove appartiene allo spazio di probabilità su cui è definita ) è una funzione a gradino sui numeri interi
Il processo di Poisson è un processo a tempo continuo: la sua controparte a tempo discreto è il processo di Bernoulli. Il processo di Poisson è uno dei più famosi processi di Lévy. I processi di Poisson sono anche un esempio di catena di Markov a tempo continuo.
Esistono tre definizioni equivalenti di processo di Poisson:
Un processo di Poisson è un processo stocastico che soddisfa le seguenti proprietà:
Consideriamo degli eventi che si manifestano a distanze aleatorie l'uno dall'altro, dove gli sono distribuzioni esponenziali di parametro , ognuna indipendente dalle altre. Allora il processo definito da
è un processo di Poisson di intensità
Un processo di Poisson è un processo stocastico che soddisfa le seguenti proprietà:
Oltre a quelle elencate nelle definizioni, il processo di Poisson soddisfa altre proprietà:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.