La molalità non è la molarità dei cinesi.
Fatti in breve Concentrazione molale, Informazioni generali ...
Chiudi
La concentrazione molale (simbolo: b[1][2]) è un'unità di misura della concentrazione di una specie chimica in una soluzione. La molalità viene utilizzata meno rispetto alla molarità, ma quest'ultima, essendo riferita al volume, assume un valore che cambia con la temperatura, cosa che non accade, invece, con la molalità.
Consideriamo una soluzione con 1-soluto/1-solvente con indici rispettivamente B ed A.
La molalita è definita come il rapporto tra il numero di moli di soluto B disciolte in una massa di solvente A espressa in kg; si può quindi scrivere:[3]
Analogamente per il solvente A si ha:
dove e indicano la massa molare e il numero di moli del solvente A.
La molalità si esprime, quindi, in mol/kg (moli su chilogrammo).
Nel caso particolare del solvente acqua, siccome l'acqua presenta una densità () a temperatura ambiente di circa 1 kg/L, i valori di molarità e molalità sono vicini tra loro. Tale valore è di per , ed essendo si ottiene .
Frequentemente, è preferita alla molarità, in lavori di chimica fisica, per la sua indipendenza dalla temperatura. Se infatti consideriamo un litro di liquido (ad esempio acqua) dove sia disciolta una mole di una certa sostanza (chiamata soluto), all'aumentare della temperatura il volume dell'acqua aumenta mentre la massa resta costante (a parità di moli di soluto), per cui la molalità sarà rimasta uguale, mentre la molarità sarà diminuita (infatti le stesse moli di soluto dopo il riscaldamento si troveranno in un volume maggiore di liquido).
L'abbassamento crioscopico e l'innalzamento ebullioscopico di una soluzione dipendono dalla sua molalità.
Consideriamo una soluzione chimica ad componenti. Indichiamo con il solvente, mentre gli soluti hanno indice fino ad . In quanto segue, il solvente viene trattato come gli altri costituenti della soluzione, in modo tale che la molalità del
solvente della soluzione, e quindi la denotiamo con b0, risulta essere nient'altro che il reciproco della sua massa molare, M0 (espresso in kg/mole):
Per i soluti abbiamo espressioni tra la molalità-frazione molare e la molalità-concentrazione molare simili:
Le espressioni tra la molalità-frazione di massa e la molalità-concentrazione di massa contengono le masse molari dei soluti Mi:
dove
- le molalità
- il numero di moli
- le masse molari
- le frazioni molari
- le frazioni di massa
- le concentrazioni molari
- le concentrazioni di massa
Frazione molare del solvente
La frazione molare (simbolo x, quantità adimensionale) del solvente si ottiene utilizzando la definizione e dividendo il numeratore e denominatore per il numero di moli n0:
Quindi la somma dei rapporti delle altre quantità molari alla quantità di solvente viene sostituita con espressioni dal basso contenenti la molalità:
ottenendo
prendendo i logaritmi naturali di entrambi i membri otteniamo
Nell'ultima relazione abbiamo utilizzato lo sviluppo in serie di e l'approssimazione quando la variabile . In questo caso che è certamente una quantità . Questa relazione è utile nelle applicazioni.
Frazione molare
La conversione molalità-frazione molare di una soluzione con 1-soluto/1-solvente è
dove
- M0 è la massa molare del solvente
- x1 è la frazione molare del soluto
Generalizzando ad una soluzione con n-soluti/1-solvente si ha
dove
- xi è la frazione molare dell'i-esimo soluto
- x0 è la frazione molare del solvente
La frazione molare del solvente è esprimibile sia in funzione delle molalità che in funzione delle frazioni molari dei soluti:
Facendo le sostituzioni si ha:
|
Frazione di massa
La conversione molalità-frazione di massa (simbolo w, quantità adimensionale) di una soluzione con 1-soluto/1-solvente è
dove
- b1 è la molalità del soluto
- M1 è la massa molare del soluto.
Generalizzando ad una soluzione con n-soluti/1-solvente si ha
dove
- bi è la molalità dell'i-esimo soluto
- Mi è la massa molare dell'i-esimo soluto
- w0, wi è la frazione di massa del solvente e dell'i-esimo soluto
La frazione di massa del solvente è esprimibile sia in funzione delle molalità che in funzione delle frazioni di massa dei soluti
Le sostituzioni danno:
|
Concentrazione molare (molarità)
La conversione molalità-concentrazione molare (simbolo c, unità kmol/m3, mol/L) di una soluzione con 1-soluto/1-solvente è
dove
- ρ è la densità di massa (in Kg/mt3) della soluzione
- ϱ0, ϱ1 è la concentrazione di massa del solvente e del soluto
- b1, c1 è la molalità e la concentrazione molare del soluto
- M1 è la massa molare del soluto
Generalizzando ad una soluzione con n-soluti/1-solvente si ha
dove la concentrazione molare del solvente c0 si può esprimere sia con le molalità che con le molarità dei soluti:
Facendo le sostituzioni si ha:
|
Concentrazione di massa
La conversione molalità-concentrazione di massa (simbolo ϱ, unità Kg/m3) di una soluzione con 1-soluto/1-solvente è
dove
- ρ è la densità di massa (in Kg/mt3) della soluzione
- b1 è la molalità del soluto
- ϱ1 è la concentrazione di massa del soluto
- M1 è la massa molare del soluto.
Generalizzando ad una soluzione con n-soluti/1-solvente, la concentrazione di massa del i-esimo soluto, ϱi, è correlata alla sua molalità, bi, come segue:
la concentrazione di massa del solvente, ϱ0, si può esprimere sia con le molalità che con le concentrazioni di massa dei soluti:
Sostituendo si ottiene:
|
Pari rapporti
In alternativa, si possono usare solo le ultime due equazioni fornite in funzione dell'espressione della concentrazione del solvente in ciascuna delle precedenti 4 sezioni (quelle evidenziate in grigio), insieme alle relazioni fornite di seguito, per derivare il resto delle proprietà di concentrazione volute:
cioè gli indici i e j indicano tutti i costituenti della soluzione, cioè gli n soluti e il solvente.
Se abbiamo 60 grammi di NaOH sciolti in 250 grammi di H2O.
Per calcolare le moli del soluto NaOH si può utilizzare la relazione seguente (n = moli, m = massa in grammi del campione, M = Massa molare):
Nel nostro esempio abbiamo, dunque, 60/40 = 1,5 moli di idrossido di sodio.
Poiché 250 grammi equivalgono a 0,25 kg, abbiamo:
Esempio di conversione
Una soluzione acida consiste di 2 soluti: 0.76, 0.04 frazioni di massa del 70% HNO3, 49% HF (dove le percentuali si riferiscono a frazioni di massa degli acidi imbottigliati completati o diluiti con H2O) e frazione di massa del solvente H2O.
Calcolo delle masse molari approssimate. I valori delle masse atomiche si possono ricavare dalla SPE, ed abbiamo tutti in unità , e quindi possiamo ricavare le masse molecolari dei composti utilizzando il fattore per esprimerle in unità :
Determiniamo le frazioni di massa di tutti i componenti della soluzione ():
Calcolo della molalità del solvente :
e possiamo ricavare tutte le altre tramite l'uso dei rapporti uguali:
In realtà, b0=bH2O si annulla, quindi non è necessario. Ottenendo:
Usiamo l'equazione diretta ricavata per per trovare la molalità di HF:
Possiamo adesso ricavare le frazioni molari ():
- (IT) Paolo Silvestroni, Fondamenti di chimica, 10ª ed., CEA, 1996, ISBN 88-408-0998-8.