Loading AI tools
Da Wikipedia, l'enciclopedia libera
L'equazione del razzo di Ciolkovskij (in russo Циолко́вский?, Tsiolkovsky secondo la traslitterazione anglosassone più frequentemente in uso) descrive il moto dei corpi di massa variabile nello spazio[1] ed è alla base della propulsione spaziale. Essa afferma che per la legge di conservazione della quantità di moto, un corpo può accelerare semplicemente grazie all'espulsione di parte della sua massa in senso opposto a quello in cui si vuole l'aumento di velocità.
È stata derivata indipendentemente dal matematico britannico William Moore nel 1813 e dal belga Casimir Erasme Coquillart nel 1873,[2] che l'applicarono al moto dei missili a scopo militare, e, alla fine dell'Ottocento, dal russo Konstantin Ciolkovskij (del quale porta il nome), che l'applicò per la prima volta al moto di un razzo in un articolo del 1903 ed è considerato il padre dell'astronautica.[2]
L'espressione classica dell'equazione del razzo è:
dove:
Essendo la velocità di efflusso equivalente relativa al veicolo uguale al prodotto dell'impulso specifico ponderale, , per l'accelerazione gravitazionale media al livello del mare, , si ha:
Il quoziente delle masse è conosciuto come rapporto di massa o mass ratio[4]
per cui
Il valore dell'incremento di velocità al termine della combustione è indicato come velocità ideale del razzo.[4]
L'equazione può essere facilmente ricavata come fece lo stesso Tsiolkovskij per la prima volta. Per la seconda legge della dinamica la forza agente su un veicolo (ovvero la spinta) è pari alla sua massa per l'accelerazione (o variazione di velocità):
ma è anche uguale (in assenza di forze esterne agenti sul veicolo quali la forza gravitazionale e le azioni aerodinamiche) alla velocità di variazione della quantità di moto, ovvero la velocità dei gas di uscita dal propulsore (−ve) per il cambiamento di massa dovuto al consumo di combustibile più la forza risultante dalla differenza di pressione tra l'ugello e l'ambiente esterno:
Introducendo la velocità di efflusso equivalente (o efficace):
ed uguagliando le due espressioni:
da cui
Potendo ora separare le variabili, l'equazione può essere integrata, ottenendo l'equazione cercata:
nella quale i pedici ed contraddistinguono rispettivamente le condizioni iniziali e finali, adottate quali estremi d'integrazione. In particolare, quali condizioni iniziali si adottano i valori della massa e della velocità possedute dal veicolo subito prima dell'accensione del motore.[5]
Si può notare come per ottenere un valore grande del Δv si possa agire teoricamente in direzioni diverse:
Per ottenere grandi spinte da un endoreattore, generalmente, si utilizza la prima situazione descritta; è questo il caso, ad esempio, dei lanciatori. La seconda soluzione è invece tipica della propulsione elettrica per uso spaziale, con bassissime masse espulse ma impulsi specifici molto elevati.
L'equazione di Ciolkovskij è stata derivata ipotizzando che il corpo di cui è analizzato il moto sia soggetto alla sola azione della spinta esercitata dal motore; non prevede quindi l'azione di forze gravitazionali o aerodinamiche. Come tale, quindi, risulterebbe esatta solo per la descrizione del moto di un razzo nel vuoto.[6]
Tuttavia, può essere efficacemente applicata all'analisi delle manovre orbitali, se eseguite con propulsori chimici. Consente infatti sia di determinare quale orbita può essere raggiunta con un dato quantitativo di propellente, sia di determinare, nella sua forma inversa (riportata di seguito),[7] quanto propellente[8] è necessario per raggiungere una data orbita (ovvero, per acquisire una data variazione nel valore della velocità, ).
Nell'applicazione alle manovre orbitali, si assume in particolare che la manovra avvenga in modo impulsivo: sia la variazione nel valore della velocità, sia la fase di accensione del motore sono trattate come se fossero istantanee. Questa ipotesi è abbastanza accurata per le accensioni di breve durata, quali quelle utilizzate nelle manovre di correzione di rotta o d'inserimento orbitale. Al crescere della durata dell'accensione del razzo, tuttavia, il risultato perde in accuratezza a causa degli effetti dell'azione della gravità sul veicolo nel corso della durata della manovra stessa. Esistono a tale scopo formulazioni differenti che tengono conto dell'azione della gravità.[9] Nel caso di propulsori a bassa spinta (quali sono i propulsori elettrici), che richiedono lunghe fasi di accensione per conseguire la variazione orbitale desiderata, sono necessarie analisi più complicate.
Dalla teoria classica del razzo è stata sviluppata una estensione soggiacente alla relatività ristretta nota come teoria del razzo relativistico, originariamente formulata da Ackeret.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.