Loading AI tools
teoria assiomatica standard per gli insiemi Da Wikipedia, l'enciclopedia libera
In matematica, e in particolare in logica matematica, la teoria degli insiemi di Zermelo-Fraenkel comprende gli assiomi standard della teoria assiomatica degli insiemi su cui, insieme con l'assioma di scelta, si basa tutta la matematica ordinaria secondo formulazioni moderne. Sono indicati come assiomi Zermelo–Fraenkel della teoria degli insiemi o sistema di assiomi di Zermelo-Fraenkel, e abbreviati con ZF.
Gli assiomi sono il risultato del lavoro di Thoralf Skolem del 1922, basato su lavori precedenti di Abraham Fraenkel nello stesso anno, che si basa sul sistema assiomatico sviluppato da Ernst Zermelo nel 1908 (teoria degli insiemi di Zermelo).
Il sistema assiomatico è scritto mediante un linguaggio del primo ordine; ha un numero infinito di assiomi poiché viene usato uno schema di assiomi. Un sistema alternativo finito viene dato dagli assiomi di von Neumann-Bernays-Gödel, che aggiungono il concetto di una classe in aggiunta a quello di un insieme; esso è "equivalente" nel senso che qualsiasi teorema riguardo agli insiemi che può essere provato in un sistema può essere provato nell'altro.
Si indica con la sigla ZFC il sistema formale dato dagli assiomi di Zermelo - Fraenkel con l'aggiunta dell'assioma della scelta: data una famiglia non vuota di insiemi non vuoti esiste una funzione che ad ogni insieme della famiglia fa corrispondere un suo elemento. La "C" nella sigla è l'iniziale di choice (scelta in inglese): per lo stesso motivo, l'assioma della scelta viene spesso abbreviato con le lettere AC (la "A" sta per "axiom").
Il linguaggio di ZF include:
Gli assiomi di ZF sono:
Indichiamo un tale A con o con {}.[1]
Indichiamo un tale C con {A,B}.[1]
Indichiamo un tale B con o con .[1]
Il più piccolo A che soddisfa questo assioma viene solitamente indicato con ω o, in quanto rispettante gli assiomi di Peano, con il simbolo utilizzato solitamente per indicare un generico modello di Peano: .[1]
Indichiamo un tale B, che viene solitamente detto insieme potenza o insieme delle parti di A, con .[1]
Un tale insieme viene solitamente indicato con [1], anche abbreviato in .
Questo è uno schema assiomatico, in quanto come P possiamo porre una qualsiasi proprietà, e ogni volta che lo facciamo stiamo formalmente creando un nuovo assioma.
Anche questo, come il precedente, è uno schema assiomatico.
Sebbene la maggioranza dei metamatematici creda che questi assiomi siano coerenti (nel senso che da essi non deriva alcuna contraddizione), questo non è dimostrato. Essi sono da molti ritenuti le fondamenta della matematica ordinaria e la loro coerenza non può essere provata dalla matematica ordinaria, come dimostrato da Gödel con il suo celebre secondo teorema di incompletezza.
La coerenza della teoria degli insiemi di Zermelo-Fraenkel può però essere provata assumendo l'esistenza di un cardinale inaccessibile maggiore di .
Il tentativo riduzionista dei logici di rifondare tutta la matematica moderna su basi insiemistiche si è scontrato con il fatto che alcuni risultati importanti basilari non sono dimostrabili con i soli assiomi di Zermelo e Fraenkel. È quindi necessario aggiungere l'assioma della scelta, e il nuovo sistema formale che ne risulta viene solitamente chiamato ZFC, dove la "C" sta per "choice" ("scelta").
Nel 1938 Kurt Gödel costruì un modello basato sulla ZF in cui l'assioma della scelta è valido (il modello è noto come Universo degli insiemi costruibili).
In tal modo egli dimostrò che se ZF è coerente, lo è anche ZFC (l'unione degli assiomi della ZF e dell'assioma della scelta).
Basandosi su tale presupposto, e sull'ipotesi, solitamente data per vera, che ZF sia coerente, i logici hanno visto nella ZFC la possibilità di fondare tutta la matematica su basi insiemistiche, dato che l'assioma della scelta si rivela indispensabile per raggiungere tutta una serie di risultati molto importanti (come l'esistenza di una base per un dato spazio vettoriale). Per questo motivo, nonostante tale assioma porti anche a risultati controintuitivi (come l'insieme di Vitali e il paradosso di Banach-Tarski), esso viene solitamente considerato vero.
Si è dovuto aspettare però il 1964 perché Cohen dimostrasse l'indipendenza dell'assioma della scelta dagli assiomi di Zermelo - Fraenkel (ovvero che se ZF è coerente anche ZFC, l'unione degli assiomi della ZF e della negazione dell'assioma della scelta, lo è). In tal modo egli provò che effettivamente ZF e ZFC non sono la stessa cosa: la sua dimostrazione si basa sulla creazione di un modello in cui valgono tutti gli assiomi di ZF e la negazione dell'assioma della scelta.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.