Loading AI tools
Dari Wikipedia, ensiklopedia bebas
Jari-jari Bohr (a0 atau rBohr) adalah sebuah konstanta fisika, yang kira-kira sama dengan jarak yang paling mungkin antara inti dan elektron dalam atom hidrogen pada keadaan dasarnya. Konstanta ini dinamai dari Niels Bohr, berkat perannya dalam permodelan atom Bohr.[1] Nilai konstanta ini adalah 5,2917721067(12)×10−11 m.[2][note 1]
Dalam satuan SI jari-jari Bohr adalah:[3]
di mana:
Dalam satuan Gaussian jari-jari Bohr secara sederhana adalah
Menurut CODATA 2014 jari-jari Bohr memiliki nilai (dengan menganggap massa elektron sebagai massa diam elektron) 5,2917721067(12)×10−11 m (yaitu, kira-kira 53 pm atau 0.53 Å).[2][note 1]
Fisika klasik memprediksi bahwa, ketika suatu elektron dalam lintasan melingkar mengalami percepatan, maka ia akan memancarkan radiasi elektromagnetik, menurut persamaan Maxwell, yang berakibat pada hilangnya energi kinetik.[4] Karena elektron kehilangan energi, ia dapat secara cepat bergerak mendekati inti atom, menabrak inti tersebut pada skala waktu sekitar 16 pikodetik.[5] Karenanya fisika klasik memprediksi bahwa tidak mungkin sebuah atom mencapai kestabilan.[6]
Niels Bohr, dengan lahirnya fisika kuantum, menyatakan bahwa momentum sudut elektron berada dalam keadaan terkuantisasi.[7] Dengan mengaitkan gaya sentripetal elektron dengan gaya Coulomb dan kuantisasi momentum sudut, Bohr mampu menghitung jari-jari dari setiap kulit elektron. Memanfaatkan energi pada elektron, yang dihitung dari energi kinetik dan potensial Coulomb dari elektron tersebut, serta persamaan efek fotolistrik, Bohr mampu menghitung panjang gelombang serta frekuensi dari foton yang dipancarkan atau yang diserap selama lompatan kuantum elektron dari kulit awal dan kulit akhir pada transisi tersebut.[8][9]
Dengan cara ini, Bohr memperoleh hasil yang selaras tidak hanya dengan potensial ionisasi hidrogen, tetapi juga dengan spektrum pancar hidrogen tersebut.[10] Rumusan Bohr sesuai dengan rumus empiris yang dibuat oleh Johann Jakob Balmer.[11]
Selanjutnya, dalam tesis doktoralnya, Louis de Broglie menunjukkan bahwa, dengan memperlakukan elektron sebagai gelombang, momentum sudut elektron dalam atom sesuai dengan postulat Bohr tersebut.[12]
Dalam model Bohr dari struktur atom, yang diajukan oleh Niels Bohr pada tahun 1913, elektron mengorbit pusat inti pada lintasan melingkar.[13] Model tersebut menyatakan bahwa elektron hanya mengorbit inti pada jarak tertentu, tergantung pada energinya. Dalam atom paling sederhana, hidrogen, satu elektron mengorbit inti dan orbit terkecilnya, dengan energi terendah, memiliki jari-jari orbital yang hampir sama dengan jari-jari Bohr. (Ini bukan secara tepat jari-jari Bohr karena efek massa tereduksi)
Meskipun model Bohr tidak lagi digunakan, jari-jari Bohr tetap sangat berguna dalam perhitungan fisika atom, sebagian karena hubungannya yang sederhana dengan konstanta fundamental lainnya. (Inilah sebabnya ia didefinisikan menggunakan massa elektron sejati daripada massa tereduksi, seperti yang disebutkan di atas). Sebagai contoh, konstanta tersebut adalah satuan panjang dalam satuan atom.
Perbedaan penting adalah bahwa jari-jari Bohr memberikan posisi rapat kebolehjadian maksimum,[14] dan bukan jarak radial yang diharapkan. Jarak radial yang diharapkan sebenarnya 1,5 kali jari-jari Bohr, sebagai hasil dari panjangnya ekor pada fungsi gelombang radial.
Jari-jari Bohr elektron adalah salah satu dari tiga satuan panjang yang terkait, dua lainnya adalah panjang gelombang Compton dari elektron serta jari-jari elektron klasik . Jari-jari Bohr dibangun dari massa elektron , konstanta Planck dan muatan elektron . Panjang gelombang Compton dibangun dari , dan kecepatan cahaya . Jari-jari elektron klasik dibangun dari , dan . Satu dari ketiga satuan panjang tersebut dapat ditulis dengan saling terkait satu sama lain menggunakan konstanta struktur halus :
Panjang gelombang Compton adalah sekitar 20 kali lebih kecil dari jari-jari Bohr, dan jari-jari elektron klasik sekitar 1000 kali lebih kecil dari panjang gelombang Compton.
Jari-jari Bohr termasuk efek massa tereduksi dalam atom hidrogen dapat diberikan melalui persamaan berikut:
di mana:
Dalam persamaan di atas, efek dari massa tereduksi dicapai dengan menggunakan peningkatan panjang gelombang Compton, yaitu hanya penjumlahan panjang gelombang Compton dari elektron dan proton.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.