Ֆերմի-գազ
From Wikipedia, the free encyclopedia
Ֆերմի-գազ, կիսամբողջ սպինով (1/2 սպինով) (ħ միավորներով) նույնական մասնիկներից՝ ֆերմիոններից բաղկացած գազ, որն ենթարկվում է Ֆերմի-Դիրակի վիճակագրությունը[1]։
Ֆերմի-գազը իդեալականացված մոդել է, բազմաթիվ չփոխազդող ֆերմիոնների համույթ։ Ֆերմիոնների մասնիկներ են, որոնք ենթարկվում են Ֆերմի-Դիրակի վիճակագրությանը, ինչպիսիք են էլեկտրոնները, պրոտոնները, նեյտրոնները և, ընդհանուր առմամբ, մասնիկները՝ կես ամբողջ թվով սպինով։ Այս վիճակագրությունը որոշում է ֆերմիոնների էներգիայի բաշխումը ֆերմի-գազում ջերմային հավասարակշռության մեջ և բնութագրվում է դրանց քանակի խտությամբ, ջերմաստիճանով և հասանելի էներգետիկ վիճակների բազմությամբ։ Մոդելը կրում է իտալացի ֆիզիկոս Էնրիկո Ֆերմիի անունը։
Այս ֆիզիկական մոդելը օգտակար է բազմաթիվ ֆերմիոններով որոշ համակարգերի համար։ Որոշ հիմնական օրինակներ են մետաղի մեջ լիցքակիրների պահվածքը, ատոմային միջուկում նուկլոնները, նեյտրոնային աստղում նեյտրոնները և սպիտակ թզուկներում էլեկտրոնները։
Նկարագրություն
Իդեալական ֆերմի-գազը կամ ազատ ֆերմի-գազը ֆիզիկական մոդել է, որը ենթադրում է չփոխազդող ֆերմիոնների հավաքածու մշտական պոտենցիալ հորատանցքում։ Ֆերմիոնները տարրական կամ կոմպոզիտային մասնիկներ են՝ կես ամբողջ թվով սպինով, հետևաբար հետևում են Ֆերմի-Դիրակի վիճակագրությանը։ Ամբողջ թվային սպին մասնիկների համարժեք մոդելը կոչվում է Բոզե-գազ (չփոխազդող բոզոնների համույթ)։ Բավականաչափ ցածր մասնիկների քանակի խտության և բարձր ջերմաստիճանի դեպքում և՛ ֆերմի-գազը, և՛ Բոզե-գազն իրենց պահում են դասական իդեալական գազի պես[2]։
Պաուլիի բացառման սկզբունքով ոչ մի քվանտային վիճակ չի կարող զբաղեցնել մեկից ավելի ֆերմիոններ՝ քվանտային թվերի նույնական բազմությամբ։ Այսպիսով, չփոխազդող ֆերմի-գազը, ի տարբերություն Բոզե-գազին, կենտրոնացնում է փոքր քանակությամբ մասնիկներ մեկ էներգիայի համար։ Այսպիսով, ֆերմի-գազին արգելվում է խտանալ Բոզե-Այնշտայնի կոնդենսատի մեջ, չնայած թույլ փոխազդեցությամբ ֆերմի-գազերը կարող են ձևավորել Կուպերի զույգ և կոնդենսատ (նաև հայտնի է որպես BCS-BEC խաչմերուկի ռեժիմ)[3]։ Ֆերմի-գազի ընդհանուր էներգիան բացարձակ զրոյում ավելի մեծ է, քան մեկ մասնիկի հիմնական վիճակների գումարը, քանի որ Պաուլիի սկզբունքը ենթադրում է մի տեսակ փոխազդեցություն կամ ճնշում, որը ֆերմիոններին պահում է առանձնացված և շարժվող։ Այս պատճառով, ֆերմի-գազի ճնշումը զրոյական չէ նույնիսկ զրոյական ջերմաստիճանում, ի տարբերություն դասական իդեալական գազի ճնշման։ Օրինակ, այս, այսպես կոչված, այլասերման ճնշումը կայունացնում է նեյտրոնային աստղը (նեյտրոնների ֆերմի-գազ) կամ սպիտակ գաճաճ աստղը (էլեկտրոնների ֆերմի-գազ)՝ ընդդեմ ձգողականության ներքուստ, որն իբր աստղը կփլուզի սև խոռոչի մեջ։ Միայն այն դեպքում, երբ աստղը բավականաչափ զանգված է, որպեսզի հաղթահարի այլասերվածության ճնշումը, այն կարող է փլուզվել և վերածվել եզակիության։ Հնարավոր է սահմանել ֆերմի ջերմաստիճան, որից ցածր գազը կարելի է համարել այլասերված (նրա ճնշումը բխում է գրեթե բացառապես Պաուլիի սկզբունքից)։ Այս ջերմաստիճանը կախված է ֆերմիոնների զանգվածից և էներգետիկ վիճակների խտությունից։ Ազատ էլեկտրոնների մոդելի հիմնական ենթադրությունը մետաղի մեջ տեղայնացված էլեկտրոնները նկարագրելու համար կարող է ստացվել ֆերմի-գազից։ Քանի որ փոխազդեցությունները անտեսվում են զննման էֆեկտի պատճառով, իդեալական ֆերմի-գազի հավասարակշռության հատկությունների և դինամիկայի հետ կապված խնդիրը հանգում է միայնակ անկախ մասնիկների վարքագծի ուսումնասիրությանը։ Այս համակարգերում Ֆերմիի ջերմաստիճանը սովորաբար կազմում է հազարավոր կելվիններ, ուստի մարդկային կիրառման դեպքում էլեկտրոնային գազը կարելի է համարել այլասերված։ Ֆերմիոնների առավելագույն էներգիան զրոյական ջերմաստիճանում կոչվում է ֆերմի էներգիա։ Ֆերմի էներգիայի մակերեսը փոխադարձ տարածության մեջ հայտնի է որպես Ֆերմի մակերես։ Գրեթե ազատ էլեկտրոնների մոդելը հարմարեցնում է Ֆերմի-գազի մոդելը՝ դիտարկելու մետաղների և կիսահաղորդիչների բյուրեղային կառուցվածքը, որտեղ բյուրեղային ցանցի էլեկտրոնները փոխարինվում են Բլոխի էլեկտրոններով՝ համապատասխան բյուրեղային իմպուլսով։ Որպես այդպիսին, պարբերական համակարգերը դեռևս համեմատաբար շարժունակ են, և մոդելը մեկնարկային կետ է հանդիսանում փոխազդեցությունների հետ առնչվող ավելի առաջադեմ տեսությունների համար, օրինակ՝ օգտագործելով խաթարման տեսությունը։
Ծանոթացրություններ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.