a látható tartományba eső fény hullámhosszának vizuális érzékelése From Wikipedia, the free encyclopedia
Köznapi értelemben a szín a környezet tárgyainak látással érzékelhető azon tulajdonsága, amit olyan fogalmakkal írunk le mint a vörös, sárga, zöld és kék stb.
A különböző tárgyak a rájuk eső fényt különböző, rájuk jellemző módon nyelik el illetve verik vissza (színinger). Ez érvényes a fényáteresztés által okozott színes jelenségekre is. Az emberi látás a visszaverődő fények egyedi sajátosságát (hullámhosszát) színként érzékeli. Agyunk pedig az érzékelt színt az adott tárgy tulajdonságaként értelmezi (érzéklet).
Tudományos szempontból a színészlelet olyan a látással érzékelhető fiziológiai érzet, amelyet a látható fény kelt, méghozzá a hullámhosszától függő minőségben.
A színek a fény hullámhosszával változnak. A látható fények kb. 380-760 nm hullámhossz közé esnek. Ez a teljes látható színspektrum. Ezen belül a fény hullámhosszának változásával együtt változik az észlelt szín (vörös, vöröses narancs, narancs, narancsossárga, sárga stb. az ultraibolyáig), amely tehát az idegrendszerben képződött észlelet az adott hullámhosszú fényingerre.
Isaac Newton fedezte fel, hogy a fény különböző hullámhosszúságú sugarak összessége. A fény útjába állított prizma megtöri a sugarak útját, és a színek láthatóvá válnak (a szivárvány hét színe). A tárgyak színe a visszavert fénysugaraktól függ, a többit az anyag elnyeli. Monokromatikus színes fényt LED vagy lézer segítségével lehet előállítani. A LED fényforrások általában több hullámhosszon is sugároznak, de ezt az emberi látás egyetlen színű fényként észleli.
A szín a vizuális érzéklet azon tulajdonsága, amelynél valamely felület tulajdonságai hasonlóak az olyan észleletekhez, mint a vörös, sárga, zöld és kék, illetve ezek kombinációja[1] Az észlelt szín vizuális érzéklet, amit olyan szavakkal fejezünk ki, mint sárga, narancs, barna, vörös, rózsaszín, zöld, kék, vagy bíbor, illetve olyan akromatikus érzékletek nevével, mint fehér, szürke, fekete; és olyan kifejezésekkel minősítünk, mint ragyogó, fakó, fényes, sötét, vagy ezek kombinációja.[2] Az észlelt szín függ a színinger spektrális tulajdonságaitól, az ingert létrehozó felület méretétől, alakjától, szerkezetétől, és környezetétől; függ az észlelő adaptációs állapotától, tapasztalataitól, és a megfigyelthez hasonló érzékletere vonatkozó emlékeitől. A színészlelet kifejezhető, mint térfogati szín, fényszín, testszín, vagy Ganzfeld szín.[3] Irodalmi hivatkozások:[4] (angol) Magyar szabvány:[5] (12 szabványlap első lapja, kiegészítésekkel)
A hétköznapi életben színek azonosítása tartalmazza annak telítettségét is és világosságát is. Amennyiben az ezektől elvonatkoztatott tulajdonságát akarjuk megadni, ehhez önálló azonosítóra van szükség. Számszerű kiértékeléseknél előnyös,ha ez mérőszámmal fejezhető ki, és így minőségi jellemzőként használható.
sorszám | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
azonosító | 10RP | 10R | 10YR | 10Y | 10GY | 10G | 10BG | 10B | 10PB | 10P | 10RP |
éppígy a megvilágításra vonatkozó értékeket (n, vagy 0 jelzi): majd ebből az u*v* jellemzőket:
ennek ismeretében a színezeti szöget:
A színezeti szög kezdőpontja az u', illetve az u* pozitív iránya, és 360°-os szögben értelmezzük.
Különbséget kell tennünk színinger és színészlelet között. A színinger (színes fényinger) a tudatunktól és látásunktól független természeti jelenség.
A színészlelet a színinger által létrehozott, az emberi látás és a tudat által létrehozott változata a színes jelenségeknek.
Az alábbiakban e kettőt egymással összehasonlítva írjuk le.
Ennek kettős értelmezése van. A szabvány szerint azok a színek, melyek közvetlenül egy fény forrásból jutnak a szemünkbe, színes fények (perceived colour 17-22-040). A fényvisszaverő felületekről (szekunder fényforrásról, hivatalosan: önvilágító szín luminous colour 17-22-045) érkező fényt ugyanígy érzékeljük. Hasonlóképpen nem önvilágító szín (non-luminous color 17-22-046) az, amely fényáteresztő, vagy diffúz fényforrásból származik.[6]
A Nemzetközi Világítástechnikai Bizottság 2020-ban értelmezett egy új mennyiséget a fényforrások minőségének kereskedelmi jelzésére, és ezt magyarul szintén fényszínnek nevezzük Színhőmérséklet#Világítástechnika (a német Lichtfarbe tükörfordítása).
Azok a színek melyek egy tárgyról vissza verődve vagy azon áthaladva jutnak a szemünkbe, a tárgyszínek 17-22-042.
Főszínei az additív színingerkeverés esetén (17-23-30 additive mixture of colour stimuli) cián, bíbor, sárga CMYK ( cyan - Magenta - Yellow) A "K" a Black jelöli, mert a valóságban nem vagyunk képesek előállítani tiszta tárgyszínt, melynek mindegyike tartalmaz feketét, valamint fehéret így szűrkét kapunk összekeverésük után a fekete szín pótlása így szükséges. Szubtraktív színinger keverés esetén a tárgyszínek feketére egészítik ki egymást.
Az a szín, mely felületről visszaérkezik a szeműnkbe. A fehér fényből visszavert színek adják a felület színét!
A Színhőmérséklet
A csillagászatban használatos hőmérsékleti színskála fehér, sárga, narancssárga és vörös, vannak köztes színek. A színosztályok a következők: O (25 000), B (kékes), A (kék-fehér), F (10 000), sárga-fehér (6 000), narancssárga (4 000) és vörös (3 000) Kelvin fokba amit a csillagok látszólagos színeinek a meghatározására készítettek. A izzó színhőmérséklete is ez alapján van meghatározva!
A színkörön elhelyezkedő tiszta színek megnevezése (sárga, sárgásnarancs, narancssárga stb.). Az emberi szem kb. száz színárnyalatot tud elkülöníteni a színkörben
A színek különböző világossági és sötétségi foka. Legvilágosabb a sárga, legsötétebb pedig az ibolya (sötét lila). A valőr kifejezés a festészet gyakorlatában használatos. A Világítástechnikai Szótár francia változatában ez a kifejezés csupán annyit jelent: érték, például 845-04-72 valeur réflectométrique = reflektométeres mérés eredménye.
„ | a magyarban a szín szó használatát kerülni kell, és mindenütt a színészlelet, illetve a színinger szavakat célszerű használni | ” |
– Lukács Gyula: A MOMCOLOR színmérők története |
A hétköznapi életben és a méréstechnikában eltérő elnevezéseket használunk.[7] A szín elsősorban a dolgok színes tulajdonságát fejezné ki. Azonban a hétköznapi nyelv és a szakma eltérő, az előbbi ide sorolja a „fehér színt” és a „fekete színt” is.[* 1] Valamennyi grafikusan szemléltetett színtérnek egyenrangú része a fehér is és a fekete is. Ha mégis a felületeknek az akromatikustól eltérő színes tulajdonságát akarjuk kifejezni, akkor a színezet (angolul hue) szót használjuk. A Nemzetközi Világítástechnikai Szótár[8] ezzel a szóval kétféle értelemben jelöli a színezetet. Unitary hue (egységszín; észlelhető, de a saját nevén kívül más névvel nem illethető színezet) és Colour primaries (alapszíningerek: a trikromatikus rendszer három alapszíne).
Ha egy tárgyra színes fényt vetítünk, vagy a tárgy maga színes; vagy mindkét feltétel teljesül, akkor a róla visszaverődő fény spektruma hiányos; egyenlőtlen – vagyis színes. Ezt színes fényingernek nevezzük. Műszeres mérését a színinger metrika feladata ellátni. Az emberi látószerv képes a fénynek ezt a tulajdonságát érzékelni, ekkor a látószervben színes fényérzéklet keletkezik. A látóideg által az agyba továbbított érzékletet az agy feldolgozza, és a látókéregben színes észlelet keletkezik. Az észleletet az emberi agy hangulatának, pszichológiai beállítottságának megfelelően értékeli. Ilyen jelenség például a szukcesszív színkontraszt (a színingerek megítélése azok egymás utánisága alapján). A szín kifejezést önmagában használni megtévesztő[9]
Az elektromágneses sugárzás emberi szem által látható tartományba eső részére érzékeny a szem retinája, de a különböző hullámhosszú fényekre másként reagál, ez okozza a különböző színüket. Háromfajta érzékelő fotopigmentet lehet megkülönböztetni, melyek érzékenysége a vörös, a zöld és a kék színeknél a legerősebb. A látórendszer fontos tulajdonsága a színállandóság, tehát az agy a színeket nem abszolút módon azonosítja, hanem relatív úton, a környezethez hasonlítva.
Egy szín származhat monokromatikus fényből, ha egy adott hullámhosszúságú fénysugarat észlelünk, vagy több fény keverékéből, ha több különböző hullámhosszúságú fénysugár összességét érzékeljük. A szemünk ugyanúgy sárgának érzékeli a sárga színnek megfelelő hullámhosszú fényt, mint a vörös és a zöld színeknek megfelelő hullámhosszú fények keverékét stb. Vannak színek, amelyeknek nincs monokromatikus megfelelője, csak színkeveréssel állíthatók elő, például a bíbor.
Azt a színt, amely a teljes spektrumon azonos intenzitású, fehérnek nevezzük. Mivel a legtöbb élőlény, így az emberek látása is a Nap spektrumához igazodott, az érzékelés szempontjából a Napból érkező fényt is fehérnek nevezhetjük, noha ez csak a látható tartományban egyenletes. A fekete színt nemcsak fény, hanem a fény teljes hiánya is kiválthatja.
Az elnevezési problémák a magyarhoz hasonlóan a német nyelvben is zavart keltenek. Erre utalva a Nemzetközi Világítástechnikai Szótár a következőket írja (eredetileg angolul):
„ | A szín élet. A színek nélkül halott lenne a világ. Őseszmék a színek, a kezdettől való színtelen fénynek és ellentétpárjának, a színtelen sötétségnek a gyermekei. Mint a láng a fényt, úgy hozza létre a fény a színeket | ” |
– Johannes Itten, 1970 |
Az érzékelés és megfigyelés típusa szerint a következő osztályokat állíthatjuk fel:[11]
A történelemben több ízben alkottak már színrendszereket. A színeket kezdetben csak megnevezésük azonosította: ásványi, állati, vagy növényi származék. Az alább felsorolt rendszerek jelenleg is használatosak; kereskedelmi, vagy műszaki alkalmazásokban. A színek történetiségét José Luis Caivano dolgozta fel a Buenos Aires-i egyetemen[12] és[13] Általánosan használható szabad színszámító szolgáltatás található az easyRGB honlapján[14]
Kémiai csoportok szerint rendezett, igen fontos gyűjtemény a Colour Index International.[31][32] Ennek célkitűzése összegyűjteni a szabadalmi oltalom alatt álló színezékeket (festékeket és pigmenteket egyaránt).
Az élelmiszeradalékok európai rendszere az E-100 és E-181 között sorolja fel az élelmiszerszínezékeket. Az Európai Közösség másik dokumentuma az EINECS,[33] amely más szempontok szerint osztályozott színezékeket is tartalmaz, többek között a kozmetikai felhasználásúakat. Az élelmiszeradalékokat[34] az Egyesült Államok vonatkozásában kissé eltérő rendszerben azonosítják.[35]
Önálló japán színgyűjteményt találunk Toyo Color Finder Color Guide néven[36]
Az Egyesült Államok kormányzati és honvédelmi célokra önálló színszabványt bocsátott ki.[37] Fontos szabványosítási lépés volt az ISCC-NBS Universal Color Language,[38] könyv formájában is[39]
A CMYK alapokon tervezett[40] digitális színatlaszt Németországban dolgozták ki[41]
Az Európai Unió saját színkezelő rendszere a European Color Initiative[42]
Bővebben: Színország törvényei, CD-lemez[43]
Név | COLOROID | Munsell | RGB (külön) | RGB (hex) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | T | V | H | V | C | R | G | B | ||
színezet | telítettség | világosság | színezet | világosság | króma | vörös | zöld | kék | jel | |
tört színek (Nemcsics: Színdinamika[44]) | ||||||||||
alument[45] | 10 | 12 | 90 | 5GY | 9 | 2 | 232 | 231 | 211 | E8E7D3 |
lenszőke | 15 | 10 | 90 | 2,5Y | 9 | 2 | 240 | 228 | 215 | F0E4D7 |
melegfehér | 20 | 10 | 85 | 10YR | 9 | 2 | 231 | 215 | 203 | E7D7CB |
pasztell színek | ||||||||||
pasztellsárga | 10 | 37 | 90 | 2,5GY | 9 | 4 | 236 | 234 | 164 | ECEAA4 |
pasztellrubin | 34 | 27 | 60 | 10RP | 6 | 8 | 219 | 129 | 153 | DB8199 |
pasztellvörös | 30 | 10 | 75 | 5YR | 8 | 2 | 222 | 184 | 181 | DEB8B5 |
krappbíbor | 40 | 7 | 60 | 10RP | 6 | 2 | 171 | 149 | 158 | AB959E |
pasztellviola | 45 | 7 | 72 | 10P | 8 | 2 | 193 | 181 | 197 | C1B5C5 |
pasztell-lila | 43 | 10 | 72 | 2,5RP | 8 | 2 | 200 | 179 | 196 | C8B3C4 |
nürnbergi kék | 54 | 37 | 70 | 7,5B | 8 | 4 | 150 | 190 | 220 | 96BEDC |
Metternich-zöld | 71 | 10 | 75 | 2,5G | 8 | 4 | 171 | 200 | 172 | ABC8AC |
barnák | ||||||||||
umbra | 14 | 10 | 45 | 2,5Y | 5 | 4 | 132 | 114 | 82 | 847252 |
sienna | 15 | 22 | 47 | 2,5Y | 5 | 10 | 158 | 115 | 3 | 9E7303 |
kaseli barna | 16 | 27 | 70 | 10YR | 7 | 4 | 216 | 172 | 123 | D8AC7B |
égetett okker | 16 | 27 | 57 | 10YR | 6 | 6 | 190 | 138 | 64 | BE8A40 |
dohánybarna | 13 | 12 | 50 | 5Y | 6 | 4 | 143 | 128 | 92 | 8F805C |
anatóliai barna | 20 | 10 | 37 | 10YR | 4 | 4 | 124 | 90 | 53 | 7C5A35 |
csokoládébarna | 21 | 7 | 40 | 10YR | 5 | 2 | 125 | 99 | 80 | 7D6350 |
négerbarna | 23 | 10 | 37 | 5YR | 4 | 6 | 134 | 85 | 58 | 86553A |
pontusi vörös | 26 | 17 | 50 | 10R | 6 | 8 | 190 | 108 | 92 | BE6C5C |
van Dyck-barna | 32 | 7 | 37 | 5R | 4 | 4 | 129 | 85 | 87 | 815557 |
zöldesbarna | 15 | 14 | 44 | 2,2Y | 4,6 | 4,8 | 145 | 118 | 65 | 917641 |
Lukács Gyula: Színmérés[46] | ||||||||||
kadmiumsárga | 13,8 | 61 | 78 | 4Y | 8 | 15,5 | 236 | 197 | 41 | ECC529 |
MI 8618-78[47] | 15 | 57,7 | 76,6 | 3,3Y | 7,81 | 15,8 | 254 | 191 | 0 | FEBF00 |
MI 8618-78 | 31,5 | 12,5 | 25,5 | 8,9R | 2,97 | 13,8 | 159 | 2 | 1 | 9F0201 |
kárminpiros | 31,8 | 17 | 28 | 7,8R | 3,3 | 12,9 | 160 | 10 | 34 | A00A22 |
smaragdzöld | 71 | 7 | 32 | 0,8G | 3,8 | 8,13 | 34 | 105 | 42 | 22692A |
türkizzöld | 63 | 13 | 31 | 9,5G | 3,6 | 8,13 | 0 | 126 | 85 | 007E55 |
RAL9001 krémfehér | 16 | 26 | 89 | 2,5Y | 9 | 0,8 | 232 | 227 | 214 | E8E3D6 |
RAL9002 szürkésfehér | 21 | 5,1 | 83 | 8,2Y | 8,5 | 0,5 | 215 | 214 | 200 | D7D6C8 |
A COLOROID színharmóniák szempontjából egyenletes lépésközű rendszer, a Munsell viszont érzékelés szempontjából egyenletes. Ezért, és az igen telített színek matematikai kezelése miatt a táblázat csak tájékoztató jellegű. A táblázat kiinduló adatai egytől egyig szakkönyvekből származnak.
Biztonsági szín- és alakjelek: grafikus szimbólumok ISO 7010:2003, illetve ISO 3864,[48] színek MSZ 17066:1985,[49] utánvilágító festékek: DIN 67510:2002
Hermann Günther Grassmann szerint:
Ha színes fénysugarakat összekeverünk, az eredmény egy kevert színű fénynyaláb lesz, amelyben az emberi érzékelés számára az egyes komponensek nem választhatók szét. Az ilyen fajta színkeverést összeadó színkeverésnek nevezik. Rendszeresen találkozunk vele televízió-nézéskor, vagy bármiféle színes kijelzős elektronikai készülékek használatakor. Az összeadó színkeverés alapszínei a vörös (piros), a zöld és a kék, ezeket különböző arányban keverve minden színt megkaphatunk, de csak azokat, amelyek a gamut belsejébe esnek. Az ezen kívülre eső színeket az emberi agyműködés (képzelet) adja hozzá.
Felületen való visszaverődéskor, szóródáskor a felület a fénynyaláb bizonyos hullámhosszúságú összetevőit elnyelheti (abszorbeálja), kivonhatja, ezért látjuk a fehér fénnyel megvilágított tárgyakat színesnek. Azt a fajta színkeverést, amikor nem színek összeadásával, hanem színösszetevők kivonásával kapunk új színt, kivonó színkeverésnek nevezzük. Legkézenfekvőbb példája a festőművészet, amikor különböző színű festékek keverésével érjük el a kívánt színhatást, de a hagyományos színes fényképezés, nyomtatás is ezen az elven alapul. Ilyenkor a színes felület színének azt a színt érzékeljük, amely a megvilágító fehér fény spektrumából megmarad, a többi elnyelődik. A kivonó színkeverés ideális alapszínei a magenta (bíbor), sárga és a cián (türkíz), de a színes nyomtatás fekete festéket is használ, a festészet pedig még többféle színt.
Az összetett fénysugár egy prizma segítségével felbontható monokromatikus összetevőire. Isaac Newton írta le először, hogy a fehér fény sok-sok ilyen összetevőből áll.[51]
Az emberi szemben háromféle színérzékelő receptorsejt van, ezek a csapok. A különböző hullámhosszú fény ezeket más és más mértékben stimulálja. A sárgászöld az L és M csapokat egyformán erősen, de az S csapokat kevéssé aktiválja. A vörös fény az L csapokat sokkal inkább, mint az M csapokat, és az S csapokat nehezen; a kék-zöld az M csapokat erősebben, mint az L csapokat, és az S csapokat egy kicsit erősebben, és a pálcikáknak is ez a fő stimulálója; az ibolyára majdnem kizárólag az S csapok válaszolnak.Az agy ezekből az információkból alkotja meg a különböző színeket a különböző hullámhosszakhoz (a rövidítés forrása a hullámhosszra utal: Long – Medium – Short).
Az L és M csapok pigmentjeinek génjei az X-kromoszómán öröklődnek. Ezek mutációja vezethet a színtévesztés gyakoribb típusaihoz. Az OPN1LW génnek sok változata alakult ki; Verrelli és Tishkoff 85 változatát találta meg 236 férfiban.[54] Ez a gén egy sárga színre érzékeny pigmentet kódol, és egyfajta tetrakromáziához vezet a nők 10 százalékában.[55][56] A kékeszöldre érzékeny pigmentet kódoló OPN1MW gén változatai kevésbé vannak hatással a spektrális érzékenységre.
A színfelismerés kisgyerekkorban a jobb agyféltekében történik, de a színek nevének megtanulásakor áttevődik a bal agyféltekébe.[57][58]
A régebbi elmélet szerint színérzékelési hiányosságok főként akkor fordulnak elő, ha egy személy egy vagy több szín látására képes csapsejtje hiányzik vagy kevéssé érzékeny. Az újabb elmélet szerint szó sincs a csapok funkciójának elvesztéséről, hanem inkább az érzékenység eltolódásáról. Ha az alany kevesebb színt lát, akkor színtévesztő, ha pedig csak a szürke árnyalatait érzékeli a fehértől a feketéig, akkor színvak. Az újabb elméletet színszűrős szemüvegek igazolják, amikkel az alanyok képesek úgy látni, ahogy a többség.[59] Eszerint a jó színlátó, a színtévesztő és a színvak között nincs éles válaszfal;[59] úgyhogy ma már a színtévesztéseket sem nevezik anópiának, hanem anomáliának. Agyi sérülések is okozhatnak színlátási zavarokat, ha a vizuális rendszer sérül.
Míg a legtöbb ember trikromát, azaz háromféle színészlelő receptora van, addig sok állatnak négyféle. Közéjük tartozik néhány pókfaj, a legtöbb erszényes, madár, hüllő, és a halak sok faja. Más fajok azonban csak két alapszínt látnak, vagy egyáltalán nem látnak színeket; ezeket dikromátoknak, illetve monokromátoknak hívják. A rovaroknak van egy ibolyántúli receptoruk is kb. 360 nm-nél, a vörös receptoruk rövidebb hullámhosszúságú (kb. 600 nm), mint az emberé. A halak között van olyan faj is, amelynek hat receptora van.
Különbséget kell tenni a retinális tetrakromázia és a funkcionális tetrakromázia között. Az előbbiben négyféle színészlelő receptor van a retinában, az utóbbiban pedig az illető egyed e négyféle receptor segítségével képes jobban megkülönböztetni a színeket.
A nők fele, de a férfiak kis százaléka retinális tetrakromát.[60] Ez fokozottan érvényesül, ha az adott egyén kétféle változatot örökölt az egyik csapfajta (közepes vagy nagy hullámhosszra érzékeny) génjéből. Ez a gén az X-kromoszómán helyezkedik el, ami különbséget okoz a nemek arányában.[60] Közülük egyesek jobban meg tudják különböztetni a színeket, ezért funkcionális tetrakromátok.[60]
A szinesztézia egyes formáiban betűk és számok látása, vagy zenei hangok hallása színérzetet is kivált. Kísérletekkel és leképező technikákkal mutatták ki, hogy ezek a színészlelések megnövekedett tevékenységgel járnak az agynak a színekkel foglalkozó részén, és hasonló agyi folyamatok hozzák létre őket, mint amik a valós színeket is létrehozzák.
Az erős fénynek kitett fényreceptorok deszenzitiválódnak, ha ez a fény az érzékeny tartományukban éri őket. Még mindig kevésbé jeleznek a szokásosnál néhány másodperccel azután, hogy a fény kihunyt. Az ez alatt látott színekben ez a komponens kevésbé van jelen, mint egyébként; ez a jelenség vezet az utóképek kialakulásához, amikor a szem tovább lát egy élénk színű figurát, de komplementer színben.
Az utóképeket a festők is felhasználták, megjelenítették, mint például Vincent van Gogh.
Hippokratész az emberi vérmérséklet jellemzésére a színeket használta:
Az ókorban a négy alapelem megjelölésére:
A heraldikában:
A tapasztalat azt mutatja, hogy a másodlagos színeket nem könnyű kikeverni, hogy a lila és a narancssárga meglehetősen labilis, mert nagyon könnyen túlsúlyba kerül benne valamelyik alapszín.
A másodlagosok az alapszínek kiegészítői. A zöld a vörös kiegészítőszíne, mert nincs benne vörös, a narancssárga a kéké, a lila a sárgáé. Habár minden értékük, színerősségük, világos-sötét, hideg-meleg hatásuk eltérő, ennek ellenére „keresik egymást”, összekapcsolódnak: szemünk is megkívánja ezt a teljességet, mert a kiegészítő színpárokban megvan mind a három alapszín. A kiegészítő színek kölcsönhatása alapján sok festő ösztönösen harmonikus képet készített a római középkoron át egészen napjainkig.
Mivel a kiegészítő színek kontrasztosak, ezért alkalmasak arra, hogy egy-egy tárgy tömegét árnyalatokkal emeljék ki. Pierre-Auguste Renoir Almás csendéletén a piros gyümölcsök gömbölydedségét az árnyékot helyettesítő színek adják meg. Megfigyelhetjük azt, hogy a színek önmagukban is képesek kifejezni fényt és sötétséget (nem kell hogy tört szín legyen). A középkori freskókon az arcok rózsaszínes árnyalatához a kontúrok zöldes árnyéka kapcsolódik.
A színek világos-sötét kontrasztját legjobban az impresszionisták használták ki, akik festményeik közül eltávolították a feketét és fehéret, és a fényt meleg színekkel, az árnyékot a megfelelő hideg kiegészítőkkel festették meg. Egy szín minél világosabb, annál melegebbnek tűnik, és fordítva.
Számos kísérlet tanúskodik arról, hogy a színek aszerint hogy melegek vagy hidegek, befolyásolják aktivitásunkat és hangulatunkat. A színek pszichikai hatásához a dinamikájuk is hozzátartozik.
A színek minden tulajdonsága és értéke viszonylagos, mert mindig változnak, átalakulnak. Vincent van Gogh Nyári est Arles-ban (Búzamező) című képén mindhárom alapszín megjelenik. Ez a legerősebb színkontraszt. A sárga a vászon kétharmadán dominál, de a város fekete sziluettjén túl is megjelenik a napban. Az alkony a város házait vörösre festi, s ez visszaverődik a búzatábla sárgáján is, amely emiatt még melegebb és még érettebb, olyan, mintha magába szívta volna az égitest minden erejét.
A tizenkét részes színkörben még hat szín van. Ezeket köztes színeknek hívjuk. A vörös köztes színt alkot a narancssárgával és a lilával, a sárga a narancssárgával és a zölddel, a kék a lilával és a zölddel. Ezen színek szerepe az árnyalatok kialakításában rejlik.
Számos kutatás is bizonyítja, hogy a nőknek és a férfiaknak, illetve az eltérő korúaknak és kultúrájú embereknek más és más színnel lehet hatásosan információt átadni. A színek jelentése[61] minden emberben közös, de kisebb mértékben különbözhet a kulturális, nagyobb mértékben az egyedi jelentés. Elmondhatjuk, hogy minden színnek más lehet a hatása. Az általuk felébresztett érzelmek függnek az adott szín árnyalatától, a személyiségünktől, hangulatunktól is. Illetve, hogy milyen színeket látunk egymás mellett. A marketingben tudatosan használják[62] az egyes színeket annak az érdekében, hogy hatásosabban átadják a kívánt üzenetet az elérni kívánt célközönségnek.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.