matematika, határozott integrál From Wikipedia, the free encyclopedia
A Newton–Leibniz-tétel (avagy Newton–Leibniz-formula) a határozott integrálás jelentős tétele.
Legyen f integrálható [a,b]-ben. Ha az F függvény folytonos [a,b]-ben, differenciálható (a,b)-ben és F'(x)=f(x) minden x∈(a,b)-re, akkor
Legyen az [a,b] intervallum tetszőleges felosztása. A Lagrange-középértéktétel szerint minden i-re van olyan ci∈(xi-1,xi) pont, amelyre
teljesül. Ha ezeket az egyenlőségeket összeadjuk minden i=1,...,n-re, akkor a bal oldalon minden tag kiesik, kivéve az F(xn)=F(b) és F(x0)=F(a) tagokat, és így azt kapjuk, hogy
Ez azt jelenti, hogy bármely felosztáshoz vannak olyan közbülső pontok, hogy az f függvénynek ezekkel a közbülső helyekkel vett közelítő összege éppen F(b)-F(a)-val egyenlő. Ebből következik, hogy az F(b)-F(a) szám minden felosztásra az alsó összeg és felső összeg között helyezkedik el. Mivel f integrálható, ezért csak egyetlen ilyen szám van: f integrálja. Így
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.