indiai matematikus From Wikipedia, the free encyclopedia
Szangamagrámi Mádhava (संगमग्राम के माधव , 1350–1425 körül, születési helye: Szangamagráma[5]) indiai matematikus. A Keralai csillagászati–matematikai iskola alapítója.
A 14. században élt Szangamagrámi Mádhava jelentős felfedezéseket tett a matematikai analízis témakörében. Legismertebb eredménye a Mádhava–Gregory-sor a értékének meghatározására, továbbá a Mádhava–Newton-sor a szinusz és koszinusz értékek közelítésére. Munkái eredeti formájukban versekben íródtak, ezekből kevés maradt fenn. (Kényelmi szempontból a fogalmakat és jelöléseket a modern trigonometriai jelölésekkel írjuk le, a soroknál megadjuk a mai ismert nevüket).
Létrehozta a trigonometrikus és inverz trigonometrikus függvények végtelen sorokkal való kifejezését (mai megnevezéssel ezek Taylor-sorok). Felfedezte a binomiális tételt és előállította a (pí) értékének meghatározására alkalmas Mádhava–Gregory-sort (más néven Leibniz-sor). Mindezeken felül meghatározta a közelítések számszerű eltérését az elméleti, pontos értékektől, ami a végtelen sor helyett véges számú összetevő használatából adódik.
A Mádhava által megadott módszerek gyakorlatilag megegyeznek azokkal a későbbi módszerekkel, amiket a matematikai analízisben Gottfried Wilhelm Leibniz, Sir Isaac Newton és Brook Taylor írt le Európában, mintegy 300 évvel Mádhava után.
Mádhava az arkusz tangens kiszámítására az alábbi végtelen sort írja le:
Ha , a Leibniz-sor néven ismert végtelen sorozatot kapjuk, ami a értékének egyik közelítését adja meg.
Egy versben megadja két szám hányadosaként a pí értékét, ami 11 tizedesjegyre pontos:
2 827 433 388 233 / 900 000 000 000 = 3,14159265359
A pí értékét levezeti a kör kerülete hosszának meghatározásából is, amit geometriailag egy sokszöggel közelít.
Ismerteti a végtelen sorral való közelítés módszerét, amit Mádhava–Leibniz-módszerként ismerünk. Ebben a végtelen sor helyett a gyakorlatban használt véges számú tag után egy korrekciós tényezőt is megad, amivel a képlet a pontos érték felé jobban közelít.
ahol
Mádhava megjegyzi, hogy „ha az osztást sokszor végezzük el, az eredmény nagyon pontos lesz”. Az eltérés a pontos értéktől három tag esetén = 0,5%, négy tagnál = 0,2%, öt tagnál = 0,12%, tíznél = 0,01%.
A pi értékének kiszámítására az alábbi képletet is alkalmazza:
ahol
A fentiek csupán illusztrációi annak, amikkel Mádhava és követői foglalkoztak. A Keralai iskola keretében készült egyes írásokból világosan látszik, hogy a korábbi munkákat gondosan elemezték, illetve azokhoz kritikus megjegyzéseket fűztek. Vagyis a korábbi kutatások eredményeit nem szolgai másolással adták tovább, hanem meg is vizsgálták azok tartalmát és helyességét.
Mádhava követői a „Keralai iskolában” halála után a 16. századig bővítették tovább műveit.[6][7]
Mádhava egyik tanítványa, Paramesvara különösen kitűnt abban, hogy újabb változatait dolgozta ki a végtelen sorok közelítési módszereinek és újabbakat talált ki. Paramesvara érdeklődött az iterációs algoritmusok konvergálási feltételeinek vizsgálata iránt. Főleg azokat vizsgálta, ahol a konvergálás lassan ment végbe, és ezeken próbált javítani. Módszere gyakorlatias volt, nem indokolta meg az eredményeit (abban a korszakban ez volt a szokás).
Figyelembe véve az Arab-tenger partja mentén fekvő malabari partvidék akkori nemzetközi, kereskedelmi jellegét és az ebből fakadó multikulturális, kozmopolita lakosságot, feltételezhető, hogy Mádhava és követőinek munkája eljutott az iszlám világba és azon keresztül a később kialakuló európai matematikai szemléletre is hatással lehetett.[8][9] Feltételezések szerint a 16. század második felében, jezsuita misszionáriusok Koccsi tengeri kikötőváros körzetében is a tengeri navigáció egyes problémáit megoldó trigonometriai és naptári módszereket kerestek. Rábukkanhattak a Keralai iskola által kidolgozott, szinusz-értéket közelítő számítások módszerére, amik leírásait magukkal vihették Európába.
Nincs bizonyíték arra, hogy ezeknek a matematikai munkáknak a 16. vagy 17. században létezett volna latin nyelvű fordítása, vagy akár összefoglalója Európában, és az infinitezimális számítások kidolgozói sem említik, hogy indiai munkákra támaszkodtak volna. Ugyanakkor a matematikatörténetben széles körben elfogadott nézet (konkrét írásos bizonyíték nélkül is), hogy az indiai matematika hatással volt a matematika európai alakulására az arab tudósok munkáin keresztül, és ez az elképzelés a matematikai módszerek koncepcióinak nagyfokú hasonlóságán alapul.
K.V. Sarma a következő műveket Mádhavának tulajdonítja:[10][11]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.