függvénytulajdonság matematikában és számítástudományban, olyan műveletet jelöl, amely többször alkalmazva sem változtatja meg a végeredményt From Wikipedia, the free encyclopedia
A matematikában az idempotencia a kétváltozós matematikai műveletek egy tulajdonsága. Idempotensnek nevezzük egy algebrai struktúra valamely elemét a struktúra egy adott kétváltozós műveletére nézve, ha azokban az esetekben, amikor a művelet mindkét operandusa megegyezik az adott elemmel, akkor a művelet eredménye is megegyezik az operandusokkal, azaz a megadott elemmel. Idempotens műveletről beszélünk, ha az adott műveletre nézve a struktúra minden eleme idempotens.
Gyűrűk esetén az idempotenciát mindig a gyűrű szorzás műveletére nézve vizsgáljuk.
Legyen tetszőleges grupoid. Ha valamely elemre teljesül, hogy , akkor azt mondjuk, hogy az idempotens elem az grupoidban. Ha minden elemre teljesül, hogy , akkor azt mondjuk, hogy a művelet idempotens az grupoidban.
Ha a definícióban szereplő grupoid egy tetszőleges halmaz leképezéseiből áll (a művelet pedig a leképezések szokásos kompozíciója), akkor elemeit idempotens leképezésnek nevezzük. Egy (azaz ) leképezés tehát akkor idempotens, ha minden -ra. Triviális példa az idempotens leképezésre minden konstans függvény, valamint a minden elemet helyben hagyó identitásfüggvény is, de közismert idempotens leképezés a komplex vagy valós számokon értelmezett abszolútérték-függvény is.
Az informatikában gyakran idempotensnek nevezünk egy műveletet, ha ugyanazt az eredményt adja egyszer, illetve többször alkalmazva. Ilyen például a HTTP Get kérés (a Post-tal szemben).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.