From Wikipedia, the free encyclopedia
A szilárdtestfizikában a kétdimenziós elektrongáz (rövidítéssel gyakran 2DEG) egy bizonyos félvezető eszközökben fellépő jelenség és az azt leíró modell neve. Lényege, hogy az elektronok a tér két irányában szabadon elmozdulhatnak, míg a harmadik irányban kvantumbezárás érvényesül, így sajátos elektromos transzportjellemzőkkel rendelkező réteg alakul ki az anyagban.
Az elektronok számára megengedett kvantumállapotok a bezárási irányban diszkrét energiaszintekre válnak el egymástól, mozgásuk pedig gyakorlatilag csak a kétdimenziós elektrongáz síkjában történik.
A kétdimenziós elektrongáz kialakulása több ma használt elektronikus eszköz alapvető eleme, így például MOSFET-ekben és HEMT-eszközökben is alkalmazzák. Az alapkutatásban jelenleg is élénk figyelem kíséri a grafénen és az átmenetifém-dikalkogenidekben kialakuló kétdimenziós elektrongázt, illetve ezek tudományos alkalmazási lehetőségeit.
Megfelelője elektronlyukak esetén a kétdimenziós elektronlyukgáz (angol rövidítéssel 2DHG).
A két dimenzióra korlátozódó vezető tartományok például a fém-oxid-félvezető (MOS), vagy félvezető-félvezető, illetve szigetelő-szigetelő heteroátmenetes szerkezetek jellemző elemei. Egy MOSFET tranzisztorban a félvezető-szigetelő határfelületen, vagy egy HEMT-eszközben a két félvezető határfelületén kétdimenziós elektrongáz alakulhat ki.[1]
Mindkét fent említett eszközben akkor jöhet létre kétdimenziós elektrongáz, ha a határfelületen a termikus egyensúly beálltakor végbemenő sávelhajlások következtében a vezetési sávél a Fermi-szint alá kerül (lásd a lenti HEMT-ábrán a sárgával jelölt háromszögű tartományt). Ezen tartományban a vezetési sávnak megfelelő állapotsűrűség lenne érvényes, tehát a félvezető anyag ebben a csatornában vezető jellegűvé válik válna. Azonban a térbeli bezártság miatt kvantumbezárási jelenség is fellép, ezért a felületre merőlegesen csak energiában kvantált állapotok megengedettek.
A kétdimenziós elektrongáz-tartományt jellemzően úgy modellezik, hogy a síkjába eső irányokban kiterjedt, arra merőlegesen pedig potenciálgödör-jellegű megoldásokat vesznek számításba.
A MOSFET a térvezérlésű tranzisztorok egy fajtája, amelyet fém-oxid-félvezető rétegszerkezetből alakítanak ki. Az eszközben a kapcsolási jelenséget úgy valósítják meg, hogy egy félvezetőben kapuelektróda téreffektusával sávelhajlást idéznek elő, melynek következtében a vezetési sáv alja elmozdul a Fermi-szinthez képest. Nyitóirányú előfeszítés esetén, ha a kapufeszültség meghaladja a küszöbfeszültséget, az eszköz félvezető-szigetelő határfelületének félvezető felé eső oldalán akkumulációs réteg, majd inverziós réteg alakul ki. Az inverzióba kerülő vezetési sávélen kétdimenziós elektrongáz alakul ki, ha a sávél a Fermi-szint alá ér.
A nagy elektronmobilitású tranzisztor (angol rövidítéssel gyakran HEMT) heteroszerkezetből kialakított tranzisztor, mely két különböző félvezető határfelületi jelenségein alapul. A két félvezető lényegi különbsége azok sávszerkezetében van: a tiltott és megengedett sávok energiaszintje illetve a kilépési munka bennük eltérő. A közös határfelületükön a termikus egyensúly beálltakor ezért sávelhajlás jelentkezik. Ha olyan félvezetőket alakítanak ki, melyekben a sávelhajlás kellő mértékű, a felület egy tartományában inverziós réteg alakulhat ki, mely kétdimenziós elektrongázként viselkedhet.
Mivel a GaAs és az AlGaAs anyagok rácsállandója közel azonos, viszont tiltott sávjuk, kilépési munkájuk, és kémiai potenciáljuk különböző. Ezért ezen anyagok alkalmazása elterjedt a HEMT-eszközökben. A rácsillesztéssel, azaz epitaxiálisan egymásra növeszthető rétegek előnye, hogy a felület mentén kevés a hibahely, így kevés az elektronok mozgását akadályozó szórócentrum. A GaAs/AlGaAs heteroátmenet epitaxiális növesztéssel, például molekulasugaras epitaxiával alakítható ki.[1]
A 2010-es évek sok újdonságot hoztak az atomi nanorétegek terén, melyek jellemzően egy- vagy néhány atomnyi vastagságú rétegek. Nevezetes példa a grafén, illetve egyes átmenetifém-dikalkogenid nanoszerkezetek, mint például a szendvicsszerkezetű molibdén-diszulfid atomi réteg.[2] E szerkezetekben az elektron mindössze néhány atomnyi vastagságú tartományba szorul. Grafén esetén dópolással, vagy kapuelektróda téreffektusával létrehozható kétdimenziós elektrongáz, vagy elektronlyukak kétdimenziós gáza.
A jelenség megfigyelésének egy korai példájában nem szilárdtest-határfelületen, hanem anyagtartomány külső felületén tapasztaltak kétdimenziós elektrongázt. Sommer 1964-es közleményében folyékony hélium felületén kialakuló állapotokon elmozdulni képes elektronokról számolt be.[3] A folyékony héliumon kívül más szigetelő anyagok esetében is tapasztalták felületi állapotok megjelenése következtében kialakuló vezető felületi csatornák létrejöttét. Ilyen jelenség lép fel például a topologikus szigetelőkben is.
A HEMT-hez hasonló, de félvezetők helyett két szigetelőből kialakított heteroátmeneten is létrejöhet elektrongáz. A ZnO/ZnMgO határátmeneten akár dópolás nélkül, csupán a sávelhajlások miatt kialakulhat kétdimenziós vezető réteg,[4] hasonlót figyeltek meg ezen kívül LaAlO3/SrTiO3 átmeneten[5] és más anyagokban.[6][7]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.