शीर्ष प्रश्न
समयरेखा
चैट
परिप्रेक्ष्य

अनन्त गुणनफल

विकिपीडिया से, मुक्त विश्वकोश

Remove ads

गणित में अनन्त गुणनफल (infinite product) को निम्नलिखित प्रकार से परिभाषित किया गया है।

समिश्र संख्याओं का कोई अनुक्रम a1, a2, a3, ... के लिए गुणनफल

के आंशिक गुणफलों a1a2...an की सीमा को अनन्त गुणनफल कहते हैं, जब n अनन्त की ओर अग्रसर होता है। जब सीमा अस्तित्व में होती है, और शून्य नहीं होती, तो गुणनफल का अभिसारित होना (converging) कहते हैं अन्यथा गुणनफल को अपसारित होना (diverging) कहते हैं।

π का मान एक अनन्त गुणनफल के रूप में लिखा जा सकता है:


Remove ads

फलनों का अननत गुणनफल के रूप में निरूपण

सारांश
परिप्रेक्ष्य

अनन्त गुणनफल स सम्बन्धित एक महत्वपूर्ण परिणाम यह है कि सभी सम्पूर्ण फलन (entire function) f(z) को सम्पूर्ण फलनों, जिनका अधिकतम एक मूल हो, के अनन्त गुणनफल के रूप में अभिव्यक्त किया जा सकता है।

नीचे कुछ फलनों के अनन्त गुणनफल के रूप में निरूपण दिए गए हैं:

अधिक जानकारी , ...
Remove ads

सन्दर्भ

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads