Loading AI tools
מוויקיפדיה, האנציקלופדיה החופשית
טרנספוזונים (Transposon) הם רצפי DNA ניידים, היכולים לנוע מאתר לאתר בתוך הגנום של אותו תא, בתהליך שנקרא טרנספוזיציה. בתהליך זה הם עשויים לגרום למוטציה במקרה שהם נכנסים לתוך אקסונים (החלק בגן היכול לקודד לחלבון) או לאזור המפקח על פעילותם של גנים אחרים[1] ואף לשנות את כמותם בגנום (סך הDNA שבגרעין), כלומר להשתכפל. טרנספוזונים מכונים לעיתים גנים קופצים, אך ביטוי זה שגוי מפני שהם אינם נחשבים גנים, ורק חלק מהטרנספוזונים מקודדים לחלבונים שמשתתפים בטרנספוזיציה. טרנספוזונים הם אחד הסוגים של אלמנטים גנטיים ניידים.
ישנם לפחות שני סוגים של טרנספוזונים: טרנספוזונים מהסוג הראשון (Class I), שנקראים רטרוטרנספוזונים, עוברים תחילה תעתוק ל-RNA, ולאחר מכן מתועתקים חזרה ל-DNA על ידי האנזים רוורס טרנסקריפטאז. טרנספוזונים מהסוג השני (Class II), שנקראים לעיתים טרנספוזונֵי DNA, מקודדים את האנזים טרנספוזאז (אנ') ובעזרתו הם משנים את מקומם בגנום, במנגנון של חיתוך והחדרה (בדומה ל-"Cut and paste").
טרנספוזונים משמשים את החוקרים ככלי לבחינת שינויים ביצורים חיים.
טרנספוזון (מ־Class II) זקוק לאנזים טרנספוזאז, שמקוּדַד על ידי הטרנספוזון עצמו או על ידי טרנספוזונים אחרים מאותה המשפחה. קצוות הטרנספוזון כוללים חזרות מהופכות (רצף זהה שנקרא בכיוונים הפוכים); הטרנספוזאז נדבק לחזרות של הטרנספוזון ושל אתר המטרה בגנום שאליו הטרנספוזון עתיד לנוע. אתר מטרה זה נחתך ומותיר "קצוות דביקים". הטרנספוזון עובר בשלב זה איחוי (ליגציה) לאתר המטרה, הפערים ממולאים, והתוצאה היא חזרות מכוונות.
רטרוטרנספוזון (מ־Class I) זקוק לאנזימים שונים שישתתפו בתהליך השעתוק, שעתוק הפוך ואינטגרציה לאתר המטרה בגנום. הרטרוטרנספוזון משתמש גם באנזימים קיימים בתא וגם בכאלו שהוא או אלמנט אחר מאותה המשפחה מקודד להם. תהליך ה"רטרוטרנספוזיציה" כולל שעתוק של רצף ה־DNA של האלמנט למולקולת RNA, שעתוק הפוך של מולקולת ה־RNA חזרה ל־cDNA, כניסה של ה־cDNA חזרה לתוך הגרעין ואינטגרציה לתוך אתר המטרה בגנום. בסוף תהליך זה ישנם שני עותקים זהים (האלמנט המקורי + החדש).
הטרנספוזונים הראשונים התגלו בתירס על ידי ברברה מקלינטוק ב-1944. גילוי זה זיכה אותה בפרס נובל ב-1983. היא הבחינה בהחדרות, בהשמטות ובטרנסלוקציות (קטע DNA המעתיק את מקומו), והסיקה מכך את קיום הטרנספוזונים. אלמנטים אלה גרמו לשינוי בצבע התירס (מסגול לצהוב והפוך). בערך 50% מהגנום של צמח זה מכיל טרנספוזונים, דבר המתבטא במגוון צבעי גרעיני התירס.
טרנספוזונים בדרוזופילה (זבוב הפירות, בעל החיים הנחקר ביותר בגנטיקה) מכונים אלמנטי P. נראה שהם הופיעו במין זה רק לפני 50 שנים, ומאז התפשטו בכל המין. אלמנטי P מלאכותיים משמשים להחדרת גנים לדרוזופילה על ידי הזרקה לעובר.
טרנספוזונים בחיידק נושאים בדרך-כלל גן אחר נוסף לטרנספוזאז. לעיתים מקודד הגן הנוסף עמידות לאנטיביוטיקה. בחיידקים, טרנספוזונים יכולים לקפוץ מהכרומוזום לפלסמיד ולהפך, ובכך לאפשר הפיכה תמידית של זנים חדשים לעמידים לאנטיביוטיקה.
טרנספוזונים יכולים להיות מוטגנים, כלומר, גורמי מוטציות. הם עשויים להזיק במספר אופנים:
מחלות שמיוחסות לטרנספוזונים כוללות: המופיליה A ו-B, פורפיריה, נטייה מוקדמת לסרטן ולניוון שרירים על שם דושן.
האבולוציה של הטרנספוזונים וההשפעה שלהם על האבולוציה של הגנום מהווים כיום תחום מחקר דינמי. מאחר שטרנספוזונים קיימים בכל ענפי החיים נראה שהתקיימו באב האוניברסלי המשותף האחרון של כל המינים או שהטרנספוזונים התפתחו בנפרד פעמים רבות. הטרנספוזונים בדרך כלל נחשבים ל-DNA אנוכי, טפיל החי בתוך הגנום של יצורים חיים. במובן זה הם דומים לנגיף. נגיפים וטרנספוזונים דומים גם מבחינת מבנה הגנום והיכולות הביוכימיות, מה שהוביל להשערה שיש להם מוצא משותף.
מאחר שפעילות הטרנספוזון עלולה להרוס גנום, נראה שיצורים רבים פיתחו מנגנונים להקטנת הטרנספוזיציה לרמות שניתנות לשליטה. חיידקים עשויים לעבור שיעור גבוה של מחיקות כדי להיפטר מטרנספוזונים ומנגיפים, בעוד שאאוקריוטים פיתחו את המנגנון של iRNA בדיוק לאותה מטרה. בתולעת העגולה Caenorhabditis elegans (גם היא נחקרת רבות בגנטיקה) משמשים כמה מהגנים שנדרשים ל-iRNA גם להקטנת פעילות הטרנספוזון.
נראה שמערכת החיסון של חולייתנים אימצה טרנספוזונים כאמצעי להגדלת מגוון הנוגדנים. מערכת הרקומבינציה V(D)J פועלת באמצעות מנגנון דומה לזה של טרנספוזונים.
טרנספוזונים אותרו לראשונה בצמח התירס ובודדו לראשונה מהפרח לוע הארי. הם שימשו ככלים יעילים בחקר הביולוגיה המולקולרית של הצמח. חוקרים משתמשים בטרנספוזונים כדי לגרום למוּטגֵנֶזָה (ייצור מוטציות). כאשר מייצרים מוטציות באמצעות טרנספוזונים, קל יחסית לזהות היכן בגנום נגרמה מוטציה, בזכות החזרות שמאפיינות את הטרנספוזונים – זאת בניגוד לשיטות כימיות לייצור מוטציות, שבהן קשה יותר לזהות את מיקום המוטציה שנגרמה. לעיתים החדרה של טרנספוזון לתוך גן יכולה לשבש את ביטוי הגן באופן הפיך, כך שהסרה של הטרנספוזון מתוך הגן באמצעות טרנספוזאז משיבה לגן את פעילותו. באמצעות טרנספוזונים ניתן ליצור צמחים שבהם לתאים סמוכים יש גנוטיפים שונים. כך ניתן להבדיל בין גנים שחייבים להימצא בתוך התא עצמו בכדי לפעול, ובין גנים שמשפיעים על תכונות שניתן להבחין בהן (לדוגמה, שינוי בצבע) גם בתאים אחרים מלבד אלה שבהם הגן מבוטא.
יש שני סוגים של מנגנוני טרנספוזיציה: רפליקטיבי (משכפל) וקונסרבטיבי (משמר).
במנגנון הקונסרבטיבי, הטרנספוזון נחתך לחלוטין החוצה ממיקומו המקורי ב-DNA וקופץ למיקום חדש. לעומת זאת, במנגנון הרפליקטיבי, הרטרוטרנספוזון יוצר עותק של עצמו ועותק זה קופץ הלאה לגנום, כך שבכל מחזור קפיצה הוא יוצר עוד העתקים של עצמו.
במחקר משמשים טרנספוזונים לשתי צורות של מוטוגנזה:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.