שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה
זהויות טריגונומטריות
רשימת ערכים מוויקיפדיה, האנציקלופדיה החופשית
Remove ads
במתמטיקה, זהויות טריגונומטריות הן זהויות בין ביטויים המכילים פונקציות טריגונומטריות אשר מתקיימים עבור כל ערך אפשרי שיציבו במשתנים. הזהויות שימושיות במקרים רבים כדי לפשט ביטויים המכילים פונקציות טריגונומטריות.

![]() בערך זה |
קשרים בסיסיים
סכם
פרספקטיבה
מתוך שתי הזהויות הללו ניתן להסיק את הטבלה הבאה שמבטאת כל פונקציה טריגונומטרית בעזרת פונקציה טריגונומטרית אחרת.
Remove ads
סימטריה, הזזה ומחזוריות
סכם
פרספקטיבה
על ידי בחינת מעגל היחידה, ניתן להסיק את התכונות של הפונקציות הטריגונומטריות שיבואו להלן.
סימטריה
כאשר מבצעים שיקוף של הפונקציות הטריגונומטריות דרך ערכים מסוימים של , התוצאה תהיה פעמים רבות אחת מהפונקציות הטריגונומטריות האחרות. מצב זה מוביל לזהויות הבאות:
הזזה ומחזוריות
על ידי הזזה של הפונקציות בזוויות מסוימות, ניתן לעיתים למצוא פונקציות טריגונומטריות אחרות אשר יכולות לבטא את הנדרש בצורה פשוטה יותר. מספר דוגמאות לכך ניתן לקבל על ידי הזזת הפונקציות ב־, או רדיאנים (90°, 180° ו-360° בהתאמה). מאחר שהמחזור של הפונקציות הללו הוא תמיד או , במקרים מסוימים הפונקציה החדשה תהיה זהה לחלוטין לפונקציה הישנה לפני ההזזה.
Remove ads
זהויות של סכום והפרש זוויות
סכם
פרספקטיבה
הדרך המהירה ביותר להוכיח זהויות אלה היא באמצעות נוסחת אוילר.
Remove ads
זהויות הנוגעות לכפולות של זווית
סכם
פרספקטיבה
(פונקציה זו של x נקראת גרעין דיריכלה)
זהויות של זווית כפולה, זווית משולשת וחצי־זווית
ניתן להוכיח זהויות אלו באמצעות הזהויות של סכום והפרש זוויות, או באמצעות זהויות המכפלה שלעיל.
סינוס, קוסינוס וטנגנס של כפולות של זווית
tan nθ יכולה להיכתב כביטוי של tan θ באמצעות היחס הבא:
cot nθ יכולה להיכתב כביטוי של cot θ באמצעות היחס הבא:
טנגנס של ממוצע זוויות
על ידי הצבת 0 ב־α או β נקבל את הזהות של חצי־זווית שנזכרה לעיל.
המכפלה האינסופית של אוילר
Remove ads
זהויות לצמצום חזקות
סכם
פרספקטיבה
זהויות אלה ניתן להוכיח באמצעות הגרסה השנייה והשלישית של זהות הזווית הכפולה של הקוסינוס (ראו לעיל).
עבור חזקות שרירותיות כלשהן של או ניתן להשתמש בזהויות הבאות, אשר נובעות ממשפט דה־מואבר, נוסחת אוילר והבינום של ניוטון.
Remove ads
זהויות להמרת מכפלה לסכום וסכום למכפלה
סכם
פרספקטיבה
זהויות אלה ניתן להוכיח באמצעות הרחבת הצד הימני במשוואה באמצעות הזהויות של סכום והפרש זוויות (ראו לעיל). ראו פעימה (אקוסטיקה) ליישום מעניין של הזהויות שלהלן.
בפרט,
זהויות אלה שימושיות בשיטות אינטגרציה על ריבועי פונקציות טריגונומטריות וניתן להכלילן לחזקות שונות.
זהויות קשורות
אם x, y, ו־z הן שלוש זוויות של משולש כלשהו, כלומר אם חצי מעגל (180°), אזי
.
לחלופין, אם אחת מהזוויות x, y, ו־z היא זווית ישרה (90° או π/2) אזי ניתן להגדיר את שני הצדדים כ־∞ (אינסוף). אין זה ∞+ ("אינסוף חיובי") וגם לא ∞− ("אינסוף שלילי"); הפונקציה tan(θ) שואפת בנקודה 2π ל־∞+ מצד שמאל ול־∞− מצד ימין.
בנוסף, אם = חצי מעגל (180°), אזי
.
משפט תלמי
ערך מורחב – משפט תלמי
אם = חצי מעגל (180°), אזי
ביסודה מהווה זהות זו זה התאמה של משפט תלמי משפת הגאומטריה לשפת הטריגונומטריה.
Remove ads
צירופים ליניאריים
סכם
פרספקטיבה
עבור שימושים מסוימים, חשוב לדעת שכל צירוף ליניארי של גלי סינוס בעלי אותו זמן מחזור אך מופע שונה מהווה גל סינוס בפני עצמו, גם הוא בעל אותו זמן מחזור אך מופע שונה. במקרה של צירוף ליניארי של גל סינוס וגל קוסינוס (בעלי הפרש מופע של π/2), נקבל
כאשר
או באופן שקול,
באופן כללי, עבור הפרש מופע כלשהו, נקבל
כאשר
וכן
Remove ads
סכומים נוספים של פונקציות טריגונומטריות
סכם
פרספקטיבה
סכומים של סינוסים וקוסינוסים עם ארגומנטים כטורים חשבוניים:
לכל a ו־b:
כאשר arctan(y, x) היא הכללה של arctan(y/x) אשר מכסה את כל היקף המעגל (לעיתים מכונה גם arctan2(y,x)).
אם = חצי מעגל (180°), אזי
Remove ads
הפונקציות הטריגונומטריות ההפוכות
הרכבה של הפונקציות הטריגונומטריות על הפונקציות ההפוכות
קשר לפונקציה המעריכית המרוכבת
סכם
פרספקטיבה
- (נוסחת אוילר),
ומכאן נסיק:
כאשר .
מכפלות אינסופיות
סכם
פרספקטיבה
הזהויות הבאות, העוסקות במכפלות אינסופיות, שימושיות עבור פונקציות מיוחדות:
זהויות ללא משתנים
סכם
פרספקטיבה
"חוק מורי":
הוא מקרה מיוחד של הזהות הבאה:
- זה נובע מכך שבהכפלה ואז בעזרת אינדוקציה וחלוקה נובעת הזהות.
כאשר k = 3, x = 20°. את השם טבע הפיזיקאי ריצ'רד פיינמן, אשר למד את הזהות הזו בילדותו מילד בשם מורי, ומאז זכר אותו למשך כל חייו.
זהויות נוספות באותה מתכונת הן:
וכן,
- .
את הזהות הבאה קשה להכליל מיד לזהות הכוללת משתנים (אך קראו בהמשך להסבר):
לאחר עיון בזהות שלהלן, ניתן להגיע למסקנה שמדידה במעלות אינה תמיד מתאימה יותר ממדידה ברדיאנים:
הגורמים 1, 2, 4, 5, 8, 10 נותנים רמז למקורה של הדוגמה הנ"ל: אלה הם המספרים הטבעיים הקטנים מ־21/2 שהם זרים ל־21 (כלומר, אין להם גורם ראשוני משותף עם 21). הדוגמאות האחרונות נובעות מעובדה בסיסית על פולינומים ציקלוטומים: הקוסינוסים מהווים את החלק הממשי של פתרונות הפולינום; סכום הפתרונות הוא פונקציית מביוס אשר מחושבת עבור המספר 21 (בדוגמה האחרונה); רק חצי מהפתרונות מופיעים בדוגמה זו. לשתי הזהויות הקודמות לזהות האחרונה נגיע בצורה דומה, עם 10 או 15 במקום 21 (ולאחר המרה למעלות).
חישוב פאי (π)
דרך יעילה במיוחד לחשב את ערכו של פאי היא שימוש בזהות שלהלן, המיוחסת לאסטרונום ג'ון משין:
זהות נוספת, המיוחסת לאוילר, היא:
ערכים קלים לזכירה של סינוס וקוסינוס
ערכים מעניינים נוספים
באמצעות יחס הזהב φ:
ראו בנוסף: קבועים טריגונומטריים מדויקים.
חשבון אינפיניטסימלי
סכם
פרספקטיבה
הזהויות שלהלן, הלקוחות מן החשבון האינפיניטסימלי, עובדות רק עבור זוויות הנמדדות ברדיאנים; הקשרים יהפכו למסובכים יותר אם נשתמש בזוויות הנמדדות ביחידות אחרות, כגון מעלות. אם נגדיר את הפונקציות הטריגונומטריות במונחים גאומטריים, ניתן למצוא את נגזרותיהן על ידי חישוב שני גבולות. הגבול הראשון הוא:
ניתן להוכיח גבול זה באמצעות מעגל היחידה וכלל הסנדוויץ'. הניסיון להוכיח את הגבול באמצעות כלל לופיטל עשוי להיות מפתה, אך אם נשתמש בגבול זה כדי להוכיח כי הנגזרת של sinx היא cosx, ולאחר מכן נשתמש בעובדה זו במסגרת כלל לופיטל, תהא זו הוכחה שמבוססת על הגיון מעגלי - וזוהי טעות לוגית. הגבול השני הוא:
אותו נוכיח באמצעות הזהות . לאחר שביססנו את שני הגבולות הנ"ל, נוכל להשתמש בהגדרת הנגזרת לפי גבול ובמשפטים קשורים כדי להראות כי וכן . אם פונקציות הסינוס והקוסינוס מוגדרות על ידי טורי טיילור שלהן, אזי ניתן למצוא את נגזרותיהן על ידי גזירת טור החזקות.
את שאר הפונקציות הטריגונומטריות ניתן לגזור באמצעות הזהויות שלעיל וכללי הגזירה.
אינטגרלים בסיסיים:
העובדה כי גזירת הפונקציות הטריגונומטריות (סינוס וקוסינוס) מניבה צירופים ליניארים של אותן פונקציות היא בעלת חשיבות ראשונה במעלה בתחומים רבים של המתמטיקה, כולל משוואות דיפרנציאליות והתמרות פורייה.
הגדרות מעריכיות
שונות
סכם
פרספקטיבה
גרעין דיריכלה
גרעין דיריכלה Dn(x) היא הפונקציה הרשומה משני צידי הזהות הבאה:
קונבולוציה של גרעין דיריכלה עם פונקציה אינטגרבילית בעלת מחזור 2π נותנת את קירוב פורייה ממעלה n של הפונקציה, כלומר סכום האיברים עד סדר n בטור פורייה של הפונקציה (או איברים −n עד n בטור פורייה המרוכב).
הרחבות של הזהות של חצי־זווית
אם נציב
אז
כאשר הביטוי eix זהה ל־cis (x).
ההצבה הנ"ל שימושית בחשבון אינפיניטסימלי לשם המרת פונקציות רציונליות עם sin(x) ו־cos(x) לפונקציות של t על מנת למצוא את הפונקציה הקדומה שלהן.
יישומים בחישוב אינטגרלים
יישום חשוב שלהן הוא במציאת אינטגרלים של פונקציות שאינן טריגונומטריות: טריק שכיח הוא להשתמש בתחליף טריגונומטרי לפונקציה, ואז לפשט את האינטגרל שהתקבל באמצעות זהות טריגונומטריות.
קיצורים היסטוריים
סכם
פרספקטיבה
הקיצורים שלהלן שימשו בעבר לצורך ניווט (לדוגמה, נוסחת ה־haversine שימשה לחישוב המרחק בין שתי נקודות על כדור). כיום משתמשים בהם לעיתים נדירות בלבד.
ראו גם
קישורים חיצוניים
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads