Loading AI tools
מוויקיפדיה, האנציקלופדיה החופשית
אנרגיית גלים (נקראת גם כוח גל), היא סוג של אנרגיה מתחדשת, המשמשת לביצוע סוגים שונים של עבודה, בין היתר ייצור חשמל. זוהי אנרגיה מתחדשת, אשר מקורה ברוחות על פני גופי המים, אשר בתורן מקורן בחום השמש. תחת השם כלולות מאות טכנולוגיות שונות, אשר נבדלות בהיקף ייצור האנרגיה שלהן, במיקום ובאופן הפקת האנרגיה.
גלי הים נוצרים כתוצאה מהרוחות המנשבות מעל פני הים. כאשר הרוח נושבת על פני מי האוקיינוס, חלק מהאנרגיה הקינטית האצורה ברוח עובר למים ונוצרים גלים. בגלים אצורה אנרגיה פוטנציאלית, המתבטאת בהפרש הגובה בין שיא הגל לתחתיתו. גודלה של האנרגיה תלוי בשני גורמים עיקריים: עוצמת הרוחות ומרחק הרוח מקו החוף. תלות זו גורמת לכך שהאנרגיה הפוטנציאלית האצורה בגלי הים משתנה כתלות באקלים ועונות השנה, ובמיקום הגאוגרפי. הגלים משמשים כנשא לאנרגיה על פני שטח האוקיינוס, כאשר האנרגיה היא שנעה לאורך פני שטח האוקיינוס ולא המים עצמם. מכיוון שהאנרגיה שנושא הגל היא אנרגיה מכנית, ההפיכה שלה לאנרגיה חשמלית מבוצעת על ידי שימוש במכשור מתקדם הממוקם על פני שטח האוקיינוס, קולט את האנרגיה הנפלטת מהתנועות המחזוריות של הגלים (בעליית וירידתם)[1] והופך אותן לאנרגיה חשמלית.
לאורך ההיסטוריה, הפוטנציאל הגלום בגלי הים היה מוכר. העדויות המוקדמות ביותר לרתימת אנרגיית הגלים הן כבר מהמאה ה-13 מסין, להנעת טחנות.[2]
בשנת 1799 המציאו פייר-סימון ג'רארד (אנ'), מהנדס מכונות צרפתי, ובנו סימון פטנט להפקת אנרגיה מגלי הים של האוקיינוס. הם ייצרו מכונה הלוכדת את האנרגיה המיוצרת על ידי גלי הים והשתמשו באנרגיה זו לצורך תפעול מכונות שונות על גבי ספינות. הרעיון התבסס על חיבור קורות לספינות מלחמה וניצול תנודות הספינה על פני מי האוקיינוס להנעת קורות אלו שתפקדו כמנופים. באמצעות תנועת המנוף ניתן היה לספק אנרגיה, אשר שימשה לתפעולן של מכונות רבות על סיפון האוניה עצמה.
בין השנים 1940 ל-1950 פיתח יושיו מסודה, מפקד חיל הים היפני לשעבר מספר טכנולוגיות שמטרתן הייתה ללכוד את אנרגיית הגלים. יושידו נחשב ל"אבי אנרגיית הגלים המודרנית" [3]
משבר הנפט בשנות השבעים היה נקודת מפנה עבור ענף האנרגיה באופן כללי, אז החלו מומחים לחפש מקורות אנרגיה חלופיים, אשר יאפשרו להימנע מלהסתמך על הפקת אנרגיה מתעשיית הנפט בלבד. בין הטכנולוגיות שנחקרו היה גם השימוש באנרגיית גלי האוקיינוס. בין החוקרים הבולטים בתחום בשנים אלו היה פרופסור להנדסה בשם סטיבן סאלטר (אנ') מאוניברסיטת אדינבורו. סאלטר המציא מתקן הידוע בשם "הברווז המהנהן" או "ברווז אדינבורו" (אנ') שמטרתו הייתה להמיר אנרגיית גלים לחשמל.[4]
לקראת שנות השמונים ותום משבר הנפט, דעך הביקוש והעניין המחקרי באנרגיית הגלים. מבחינה טכנולוגית התקלות המערכתיות גבו מחיר כלכלי גבוה, הטכנולוגיה לא הייתה בשלה ולכן הפקת אנרגיה בדרך זו הייתה פחות יעילה. מתקנים שהומצאו באותה עת לא הוכיחו את עצמם כיעילים מספיק.[5]
הצורך במציאת מקורות אנרגיה חלופיים וחדשניים לא נעלם, ולפיכך בשנות התשעים החלו מחקרים משמעותיים ובוצעו מספר פרויקטים מעשיים בפועל. מספר הפטנטים שפורסמו בתחום אנרגיית הגלים בין השנים 2009–2013 עמד על כ-150.[6]
קיימות מספר טכנולוגיות מתאימות להפקת אנרגיה, אשר ניתן לחלק על-פי 2 קטגוריות כלליות: מיקום ועקרון הפעולה. בשוק פותחו מאות טכנולוגיות, אשר משלבות בין מיקומים שונים ועקרונות פעולה שונים, אך המפורטות כאן הן העיקריות והנפוצות כיום.
מתקנים מסוג זה מוצבים באופן מקביל לכיוון הגל ולרוב ארוכים מאורך הגל. שמם נובע מכך שהם מנחיתים את משרעת (אמפליטודת) הגל בעת ספיגת האנרגיה. מתקנים אלו בנויים מסדרה של צילינדרים נעים המחוברים במחברים גמישים המאפשרים לכל צילינדר לנוע בנפרד מהאחרים.
מתקנים מסוג זה מוצבים באופן ניצב לכיוון הגל וצפים על פני המים. במתקנים אלו האנרגיה הקינטית האצורה בגל מגיעה אל המתקן, ומשמשת להנעת בוכנה כאשר ישנו חלק מקובע. אחד המתקנים הידועים יותר הוא ה"ברווז" שפותח על ידי החוקר הבריטי פרופ' סטפן סולטר. תחת סוג זה נמצאים גם מתקני Overtopping, בהם מי הגלים מועברים דרך מאגר הנמצא מעל פני המים ומוזנים בחזרה לים דרך טורבינות.
שיטה נוספת היא (Oscillating Water Column). אחת השיטות הוותיקות (משנות ה-40), בה המתקן ממוקם בחלקו מתחת למים, כאשר הפקת האנרגיה מתבצעת כאשר מים נכנסים לתא, ודוחקים החוצה כמות אוויר שווה אשר גורמת לסיבוב טורבינה.
במתקנים מסוג זה כיוון הגל אינו חשוב. גודלם קטן יחסית לאורך הגל והם נעים מעלה ומטה על פני המים או בעומק המים על-ידי לחץ המים. תחת תת-קטגוריה זו נמצאים ממירי אפקט ארכימדס. מתקנים אלו ממוקמים קרוב לחוף ומקובעים לקרקעית, כאשר האנרגיה מופקת על ידי ניצול הפרשי הלחצים בין פסגת ושפל הגל. כאשר פסגת הגל מעל המתקן הוא נע מטה וכאשר שפל הגל מעליו הוא שב למעלה.
מתקנים מסוג אלו ניצבים לתנועת הגלים. במתקן זרוע אשר מחוברת בציר למתקן מקובע לקרקעית הים. תנועת הגלים גורמת ל"נדנוד" חוזר של הזרוע אשר מחוברת לבוכנה.
מתקני אנרגיית גלים אינם פולטים מזהמים כחלק מתהליך ייצור האנרגיה, בגזים, בנוזלים או במוצקים ואינם נחשבים לפיכך למתקנים מזהמים. עם זאת, לפריסה של חוות אנרגיית גלים יכולה להיות השפעה על הסביבה. השפעות אלה יכולות להיות מתונות יותר במתקנים צפים שלא על החוף לעומת מתקנים מבוססים על החוף.
השלכות עיקריות:
בחופים המערביים של ארצות הברית, אירופה, יפן וניו זילנד יש אתרים בעלי פוטנציאל גבוה להפקת אנרגיה של גלי ים. בסוכנות האנרגיה הבינלאומית, מעריכים כי הפוטנציאל העולמי של אנרגיית הגלים גדול פי 8 מצריכת האנרגיה הממוצעת השנתית של גרמניה. הפוטנציאל האנרגטי השנתי התאורטי של גלים בחופי ארצות הברית מוערך בכ-2.64 טריליון קילוואט-שעה, שהם שווי ערך לכ-64% מייצור החשמל האמריקני בשנת 2019.
דוגמה בולטת לשימוש בטכנולוגיה היא בארצות הברית, שם רבים ממוקדי האנרגיה הרלוונטיים נמצאים בקרבה יחסית לחוף. קרבה זו מאפשרת חיבור קל יחסית למתקנים בהם ממירים את האנרגיה החשמלית ממקור ההזנה אל הצרכן. הקרבה אל החוף מאפשרת יישום פשוט יחסית, ולכן ארצות הברית מקדמת ומפתחת ענף זה בקצב מתמיד. נכון לשנת 2020, מספקת אנרגיית גלי הים בארצות הברית כשישה אחוזים[1] מהצריכה של כל אוכלוסיית המדינה. [7]
פרויקטים של אנרגיית גלים פועלים גם באוסטרליה, קנדה, צרפת, יפן, קוריאה, ובריטניה.[8][9]
מערכת קיימת להפקת חשמל מגלי הים פועלת באמצעות מערכת של מצופים ועזרים נוספים, הממירות את אנרגיית הגלים לחשמל.[10] מספר כוחות שונים פועל על המצופים: כוח גלי הים, השינויים במפלס ובזרימת המים, אפקט נעילת האוויר ואפקטים נוספים. כל הנ"ל תורמים לתהליך המרת האנרגיה.
מערכת חיישנים מנטרת באופן קבוע את הפעילות של תת-המערכות השונות, כמו גם את תנאי הסביבה והאוקיינוס. כתוצאה מכך, בכל עת ובזמן אמת המידע שנאסף מגיע אל מערכות הבקרה ביבשה. למערכות החיישנים יש את היכולת לחוש בסופה מתקרבת, ולשנות את גובה המצופים באופן ממוכן (השקעתם במים או העלאתם מעל גובה פני המים), לשם הגנה עליהם מנזקי הסופה.
אנרגיית תנועת המצופים מומרת ביבשה ללחץ הידראולי, אשר מפעיל גנרטור, המייצר אנרגיית חשמל.
לצורך שמירה על אמינות המערכת - רק רכיבים חיוניים שלה ממוקמים במים. אלה הם המצופים ובוכנות הידראוליות. יתר הרכיבים של המערכת ממוקמים ביבשה.
Eco wave power היא חברה ישראלית שנוסדה בתל אביב בשנת 2011.[14] החברה פיתחה טכנולוגיה חדשנית ומתקדמת להפקת אנרגיה מגלי ים ויש לה 17 פטנטים ופטנטים ברישום. בשנת 2014 הקימה את פרויקט המו"פ הראשון שלה בנמל יפו. בספטמבר 2015 הוכר הפרויקט כ"מתקן חלוץ" על ידי המדענית הראשית של משרד התשתיות הלאומיות, האנרגיה ומשאבי המים. בשנת 2016, הקימה החברה את תחנת הכוח הראשונה שלה שמחוברת לרשת החשמל בגיברלטר. התחנה הוקמה במימון חלקי של האיחוד האירופי. בשנת 2018 זכתה החברה במענק של משרד האנרגיה לצורך הקמת תחנה חדשה בנמל יפו, בהספק מותקן של 100 קילוואט, ולחיבורה לרשת החשמל הארצית.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.