במתמטיקה, ובמיוחד בתורת הקטגוריות, פונקטור (נקרא גם העתקן) הוא סוג מיוחד של העתקה בין קטגוריות.
בערך זה נעשה שימוש בסימנים מוסכמים מתחום המתמטיקה. להבהרת הסימנים ראו סימון מתמטי. |
פונקטורים הוגדרו לראשונה בטופולוגיה אלגברית, שם שויכו מבנים אלגבריים למרחבים טופולוגיים (למשל החבורה היסודית), והומומורפיזמים אלגבריים שויכו לפונקציות רציפות. כיום, פונקטורים קיימים בכל תחומי המתמטיקה, והם מאפשרים ליצור קשרים בין תחומים מתמטיים שונים.
את המונח טבע רודולף קרנפ, והוא אומץ על ידי אחד ממייסדי תורת הקטגוריות, סאונדרס מק'ליין.
- ההעתקה מקטגורית החבורות לקטגורית הקבוצות, המעתיקה חבורה לקבוצת האיברים שלה, ומעתיקה הומומורפיזם בין חבורות למורפיזם בין קבוצות המגדיר אותו, הוא פנקטור קווריאנטי. פונקטורים מהצורה הזאת, אשר שוכחים חלק מהמבנה של האובייקטים והמורפיזמים בקטגוריה, נקראים פונקטורים שוכחים.
- ההעתקה המתאימה לכל מרחב וקטורי את המרחב הדואלי לו, ולכל העתקה ליניארית את ההעתקה הצמודה לה היא פונקטור קונטרה וריאנטי מהקטגוריה של מרחבים וקטורים לעצמה.
- ההעתקה המתאימה לכל חבורת לי אלגברת לי היא פונקטור. במקרה זה, למורפיזם של חבורות לי הפונקטור מתאים את הדיפרנציאל (נגזרת) :{\mathfrak {g}}\to {\mathfrak {h}}}
.
- דוגמה מגאומטריה אלגברית: ההעתקה מקטגוריית היריעה אלגבריות אפיניות מעל שדה לקטגוריית לאלגברות הפולינומים מעל k היא פונקטור קונטרה-וריאנטי. לכל יריעה אלגברית אפינית הפונקטור מתאים את חוג הקואורדינטות ולכל מורפיזם של יריעות אפיניות שהוא העתקה פולינומית הפונקטור מתאים הומומורפיזם המוגדר כך: לכל שהיא העתקה פולינומית , וזו העתקה פולינומית מ- ל- (כהרכבה של שני פולינומים).
יהיו ו- קטגוריות קטנות מקומית (כלומר: אוסף המורפיזמים בין כל שני עצמים בקטגוריה הוא קבוצה קטנה). יהי פונקטור מ- ל-. הפונקטור משרה פונקציה בין קבוצות
לכל זוג עצמים ו- ב-.
הפונקטור נקרא:
- נאמן (faithful) אם הוא פונקציה חד-חד-ערכית (injection) לכל זוג עצמים ו- ב-.
- מלא (full) אם היא פונקציה על (surjection) לכל זוג עצמים ו- ב-.
- נאמן ומלא (fully faithful) אם היא פונקציה חד-חד-ערכית ועל (bijection) לכל זוג עצמים ו- ב-.