באופן אינטואיטיבי ניתן להבין את התפלגות ארלנג כסכום של -משתנים מקריים מעריכים, בלתי-תלויים עם תוחלת . כאשר מספר השלבים בהתפלגות גדול (שואף לאינסוף) אז התפלגות שואפת להתפלגות מנוונת מרוכזת סביב הנקודה .
לפיכך כאשר פרמטר הצורה הוא 1, מתקבל מקרה פרטי בו ההתפלגות היא למעשה התפלגות מעריכית. מצד שני התפלגות גמא מהווה הכללה של התפלגות ארלנג בה ניתן לשבץ ערכים ממשים בפרמטר מספר השלבים.
התפלגות ארלנג נקראת על שמו של אגנר קרארוף ארלנג שפיתח אותה במסגרת עבודתו על גרסה מוקדמת של תורת התורים. ארלנג התמודד עם הצורך המעשי להעריך את מספר שיחות הטלפון שעשויות להתקבל בו זמנית על ידי מפעילי תחנות מיתוג במערך תקשורת. מאוחר יותר כאשר הורחבה עבודתו של ארלנג בתחום הנדסת תעבורה טלפונית, הוכללה ההתפלגות כך שיתאפשר גם חישוב של זמני המתנה במערכות תורים. כיום משמשת ההתפלגות ארלנג גם בתחומים כגון תהליכים סטוכסטיים, אקטואריהוביומתמטיקה.
צורה שקולה לכתיבת פונקציית צפיפות ההסתברות על ידי פרמטריזציה חלופית בה נעשה שימוש ב-:
: }}x,\mu \geq 0}
בצורה זו משתמשים ב- פרמטר גודל, כאשר (). בצורה זו ניתן לראות בנקל כי כאשר שווה ל 2, ההתפלגות זהה להתפלגות כי בריבוע בעלת דרגות חופש. ולכן התפלגות ארלנג היא הכללה להתפלגות כי בריבוע עבור דרגת חופש זוגית, ואכן לעיתים נקראת התפלגות זו התפלגות ארלנג-k.
קיים פיתוח אסימפטוטי לפי נוסחה של רמנוג'אן עבור הערך החציון של התפלגות ארלנג[1] עבור הפיתוח הזה ניתן לחשב את הקבועים וההגבלות הידועים.[2][3]
הקרוב הוא:
והערך החציון לפי הקרוב הוא פחות מהתוחלת, שערכה הוא: .[4]
ניתן להפיק מספרים אקראיים בהתפלגות-ארלנג ממספרים אקראיים התפלגות אחידה () באמצעות הנוסחה הבאה:[5]
זמני המתנה
מודל תהליך פואסון מאפשר ייצוג של סדרת אירועים בלתי תלויים, בעלי קצב עם תוחלת סופית. במצב זה ניתן להעריך את זמן ההמתנה לסיומם של k אירועים כאלו על ידי התפלגות ארלנג. השאלה המקבילה: "מהו מספר האירועים הצפוי בפרק זמן נתון?" מתואר על ידי התפלגות פואסון.)
ניתן להשתמש בהתפלגות ארלנג להערכת זמן בין שיחות נכנסות, בשילוב עם אורכם הצפוי של שיחות נכנסות על מנת לייצר מידע על עומס התנועה נמדד ביחידות על שם ארלנג. ניתן להעריך לפי שיטה זו את ההסתברות לנפילת חבילות מידע ברשת מחשבים ועיכוב, על פי הנחות שונות לגבי אופן טיפול בשיחות שנחסמות. כאשר שיחות שנחסמות מבוטלות ניתן להשתמש בנוסחת ארלנג ב', וכאשר שיחות חסומות נאגרות בתור עד שהם נענות ניתן לחשב לפי נוסחת ארלנג ג'. נוסחות ארלנג-ב ו-ג עדיין משמשות מהנדסים ברמה יומיומית כמודלים של תעבורה. יישומים לנוסחאות אלו הם בתכנון מוקדים שרות טלפוניים ומערכות הזמנה לשירותים מכוונים ומערכות מעכב פרסום טלפוני.
כמו כן, נעשה שימוש בהתפלגות ארלנג בתחום כלכלת עסקית בבניית מודלים לתיאור משך זמן בין רכישות.[6]
Choi, K. P. (1994). "On the medians of gamma distributions and an equation of Ramanujan". Proceedings of the American Mathematical Society. 121: 245–251. doi:10.1090/S0002-9939-1994-1195477-8. JSTOR2160389.
Adell, J. A.; Jodrá, P. (2007). "On a Ramanujan equation connected with the median of the gamma distribution". Transactions of the American Mathematical Society. 360 (7): 3631. doi:10.1090/S0002-9947-07-04411-X.
Jodrá, P. (2012). "Computing the Asymptotic Expansion of the Median of the Erlang Distribution". Mathematical Modelling and Analysis. 17 (2): 281–292. doi:10.3846/13926292.2012.664571.