O peteiro ou rostro (rostrum) que teñen todos os cefalópodos existentes é unha estrutura dividida en dúas partes, situada na masa bucal e rodeado dos apéndices cefálicos (brazos) musculares. As dúas pezas que forman o peteiro, moitas veces denominadas mandíbulas,[1] son a mandíbula dorsal e a inferior, que encaixan funcionando a modo de tesoira.[2][3] Está composto principalmente de quitina e proteínas con enlaces cruzados,[4][5][6][7] polo que os peteiros son case indixeribles e a miúdo son os únicos restos identificables dos cefalópodos que se encontran nos estómagos de especies predadoras coma os cachalotes.[8] Poden utilizarse para estimar a lonxitude do manto e o peso total do corpo do animal orixinal así como a biomasa inxerida total da especie.[9][10][11][12][13][14][15] Os peteiros dos cefalópodos fanse gradualmente menos ríxidos a medida que nos movemos desde o extremo á base, un gradiente que resulta da composición química diferente das distintas zonas. Nos peteiros hidratados das luras de Humboldt (Dosidicus gigas) este gradiente de rixidez abrangue dúas ordes de magnitude.[16]
Coñécense restos fosilizados dos peteiros de varios grupos de cefalópodos, tanto extintos coma aínda existentes, incluíndo luras, polbos, belemnitas, e vampiromorfos.[1][17][18][19][20][21][22] Os ápticos, estruturas en forma de placas que se encontran nos ammonites, poderían tamén ser elementos das mandíbulas.[23][24][25][26]
Nas ilustracións móstranse os termos utilizados para referirse ás distintas partes do peteiro dos cefalópodos.
Vista lateral do peteiro inferior do Chiroteuthis picteti (3,6mm LRL, 160mm ML (lonxitude do manto, estimado)).[2] Para vela correctamente hai que utilizar lentes de 3D vermellas-ciano
Vista lateral do peteiro superior do mesmo espécime (2,7mm URL)[2]
En teutoloxía utilízanse comunmente como medidas do peteiro a lonxitude rostral inferior (lower rostral length, LRL) e a lonxitude rostral superior (upper rostral length, URL), respectivamente. Estas son as medidas estándar da medida do peteiro nos Decapodiformes, mentres que a lonxitude da cuberta (hood length) é a preferida para os Octopodiformes.[8]
Tanabe, K., Y. Hikida & Y. Iba (2006). Two coleoid jaws from the Upper Cretaceous of Hokkaido, Japan. Journal of Paleontology80(1): 138–145. doi[0138:TCJFTU2.0.CO;2 10.1666/0022-3360(2006)080[0138:TCJFTU]2.0.CO;2]
Hunt, S. & M. Nixon (1981). A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker disc, radula and oesophageal cuticle of cephalopods. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry68(4): 535–546. doi10.1016/0305-0491(81)90071-7
Jackson, G.D. (1995). The use of beaks as tools for biomass estimation in the deepwater squid Moroteuthis ingens (Cephalopoda: Onychoteuthidae) in New Zealand waters. Polar Biology15(1): 9–14. doi10.1007/BF00236118
Jackson, G.D., N.G. Buxton & M.J.A. George (1997). Beak length analysis of Moroteuthis ingens (Cephalopoda: Onychoteuthidae) from the Falkland Islands region of the Patagonian Shelf. Journal of the Marine Biological Association of the United Kingdom77(4): 1235–1238. doi10.1017/S0025315400038765
Miserez, A., T. Schneberk, C. Sun, F.W. Zok & J.H. Waite (2008). The transition from stiff to compliant materials in squid beaks. Science319(5871): 1816–1819. doi10.1126/science.1154117
Zakharov, Y.D. & T.A. Lominadze (1983). New data on the jaw apparatus of fossil cephalopods. Lethaia16(1): 67–78. doi10.1111/j.1502-3931.1983.tb02000.x
Kanie, Y. (1998). New vampyromorph (Coleoidea: Cephalopoda) jaw apparatuses from the Late Cretaceous of Japan. Bulletin of Gumma Museum of Natural History2: 23–34.
Tanabe, K. & N.H. Landman (2002). Morphological diversity of the jaws of Cretaceous Ammonoidea. Abhandlungen der Geologischen Bundesanstalt, Wien57: 157–165.
Tanabe, K., P. Trask, R. Ross & Y. Hikida (2008). Late Cretaceous octobrachiate coleoid lower jaws from the north Pacific regions. Journal of Paleontology82(2): 398–408. doi10.1666/07-029.1
Klug, C., G. Schweigert, D. Fuchs & G. Dietl (2010). First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia43(4): 445–456. doi10.1111/j.1502-3931.2009.00203.x
Tanabe, K. (2012). Comparative morphology of modern and fossil coleoid jaw apparatuses. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen266(1): 9–18. doi10.1127/0077-7749/2012/0243
Morton, N. & M. Nixon (1987). Size and function of ammonite aptychi in comparison with buccal masses of modem cephalopods. Lethaia20(3): 231–238. doi10.1111/j.1502-3931.1987.tb02043.x
Lehmann, U. & C. Kulicki (1990). Double function of aptychi (Ammonoidea) as jaw elements and opercula. Lethaia23: 325–331. doi10.1111/j.1502-3931.1990.tb01365.x
Seilacher, A. (1993). Ammonite aptychi; how to transform a jaw into an operculum? American Journal of Science293: 20–32. doi10.2475/ajs.293.A.20
Bibliografía
Aldridge, A.E. (2009). Can beak shape help to research the life history of squid? New Zealand Journal of Marine and Freshwater Research43(5): 1061–1067. doi10.1080/00288330.2009.9626529
Bolstad, K.S. (2006). Sexual dimorphism in the beaks of Moroteuthis ingens Smith, 1881 (Cephalopoda: Oegopsida: Onychoteuthidae). New Zealand Journal of Zoology33(4): 317–327. doi10.1080/03014223.2006.9518459
Chen, X., H. Lu, B. Liu, Y. Chen, S. Li & M. Jin (2012). Species identification of Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis and Illex argentinus (Ommastrephidae) using beak morphological variables. Scientia Marina76(3): 473–481.doi10.3989/scimar.03408.05B
Cherel, Y. & K.A. Hobson (2005). Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proceedings of the Royal Society B: Biological Sciences272(1572): 1601–1607. doi10.1098/rspb.2005.3115
Clarke, M.R. & N. MacLeod (1974). Cephalopod remains from a sperm whale caught off Vigo, Spain. Journal of the Marine Biological Association of the United Kingdom54(4): 959–968. doi10.1017/S0025315400057684
Clarke, M.R. & L. Maddock (1988). Beaks of living coleoid Cephalopoda. In: M.R. Clarke & E.R. Trueman (eds.) The Mollusca. Volume 12. Paleontology and Neontology of Cephalopods. Academic Press, San Diego. pp.121–131.
Clarke, M.R. & R.E. Young (1998). Description and analysis of cephalopod beaks from stomachs of six species of odontocete cetaceans stranded on Hawaiian shores. Journal of the Marine Biological Association of the United Kingdom78(2): 623–641. doi10.1017/S0025315400041667
Hernańdez-García, V., U. Piatkowski & M.R. Clarke (1998). Development of the darkening of Todarodes sagittatus beaks and its relation to growth and reproduction. South African Journal of Marine Science20(1): 363–373. doi10.2989/025776198784126485
Hobson, K.A. & Y. Cherel (2006). Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Canadian Journal of Zoology84(5): 766–770. doi10.1139/z06-049
Lalas, C. (2009). Estimates of size for the large octopus Macroctopus maorum from measures of beaks in prey remains. New Zealand Journal of Marine and Freshwater Research43(2): 635–642. doi10.1080/00288330909510029
Martínez, P., A. Sanjuan & Á. Guerra (2002). Identification of Illex coindetii, I.illecebrosus and I.argentinus (Cephalopoda: Ommastrephidae) throughout the Atlantic Ocean; by body and beak characters. Marine Biology141(1): 131–143. doi10.1007/s00227-002-0796-7
Ogden, R.S., A.L. Allcock, P.C. Watts & J.P. Thorpe (1998). The role of beak shape in octopodid taxonomy. South African Journal of Marine Science20(1): 29–36. doi10.2989/025776198784126476
Roeleveld, M.A.C. (2000). Giant squid beaks: implications for systematics. Journal of the Marine Biological Association of the UK80(1): 185–187. doi10.1017/S0025315499001769
Uchikawa, K., M. Sakai, T. Wakabayashi & T. Ichii (2009). The relationship between paralarval feeding and morphological changes in the proboscis and beaks of the neon flying squid Ommastrephes bartramii. Fisheries Science75(2): 317–323. doi10.1007/s12562-008-0036-2