Loading AI tools
De Wikipédia, l'encyclopédie libre
Étant donnés deux espaces mesurables et , la tribu produit, notée , permet de donner une structure d'espace mesurable à l'ensemble produit ; elle est définie de la façon suivante :
Le lemme de transport permet de montrer qu'une application , définie sur un espace mesurable à valeurs dans l'espace produit , est mesurable pour la tribu produit si et seulement si les applications coordonnées sont, chacune, mesurables pour les tribus .
Le lemme de transport permet de montrer que les applications y↦(x,y) (pour x fixé) et x↦(x,y) (pour y fixé) sont aussi mesurables.
Étant donnés deux espaces topologiques et munies de leurs tribus boréliennes respectives et . Il y a alors deux façons naturelles de donner au produit une structure d'espace mesurable :
En effet, les projections sont continues pour la topologie produit, donc mesurables pour la tribu borélienne ; la tribu produit étant la plus petite tribu rendant mesurables les projections on obtient l'inclusion désirée.
En effet, soit un ouvert de , alors est une union dénombrable de pavés mesurables de la forme (car ils forment une base dénombrable de la topologie produit) : par conséquent d'où .
Un contre-exemple possible est l'ensemble des fonctions réelles bornées.
Le produit d'un nombre fini, disons , de tribus se définit de façon similaire : il s'agit de la plus petite tribu contenant les pavés mesurables . Les propriétés énoncées pour le produit de deux tribus s'étendent sans difficulté au cas de tribus.
Si on considère maintenant un produit dénombrable d'espaces mesurés , la tribu produit , définie sur l'ensemble produit , est la tribu engendrée par les ensembles de la forme où et où sauf pour un nombre fini d'indices .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.