Loading AI tools
variations brèves du potentiel électrique des neurones responsables de l'influx nerveux De Wikipédia, l'encyclopédie libre
Le potentiel d'action, autrefois et encore parfois appelé influx nerveux, est un événement court durant lequel le potentiel électrique d'une cellule (notamment les neurones, mais aussi d'autres cellules excitables telles que les cellules musculaires, les cellules endocrines ou les cellules végétales[1] des tubes criblés du phloème[2]) augmente puis chute rapidement.
La membrane plasmique présente une perméabilité sélective (voir perméase), modulable par différents facteurs comme son degré de polarisation ou par des neurotransmetteurs, à l'égard de différents ions (en particulier, sodium Na+, potassium K+, chlore Cl− et calcium Ca2+).
La différence de concentration ionique résultante détermine la valeur locale du potentiel transmembranaire.
Au repos, il existe un potentiel transmembranaire d'environ −70 mV : c'est le potentiel de repos. Étant donné que la membrane mesure 7 nm d'épaisseur, cela correspond à un champ électrique de dix millions de volts par mètre.
Le potentiel d'action, est défini comme étant une inversion, non généralisée mais locale, de la polarité membranaire qui a la propriété de se propager suivant un sens unidirectionnel. De ce fait, chaque potentiel d'action comprend une phase de dépolarisation membranaire suivie immédiatement d'une phase de repolarisation membranaire.
Le potentiel d'action est donc constitué d'une succession d'événements :
Le potentiel d'action dure entre 3 et 4 millisecondes.
La genèse du potentiel d'action a lieu au niveau du cône d'émergence, à la base du corps cellulaire du neurone (ou le péricaryon) qui fait la sommation des potentiels gradués provenant des synapses situées le long des dendrites et sur le corps cellulaire :
Tous les potentiels d'action ayant la même amplitude (+100 mV), le codage de l'influx nerveux se fait donc en modulation de fréquence.
Il faut rappeler que les valeurs ici décrites sont celles du neurone « idéal » des électrophysiologistes, elles peuvent avoir des valeurs très différentes pour le seuil d'excitabilité, le potentiel de repos…
Les potentiels d'action se propagent par processus des bases ioniques.
Les potentiels d'action, de repos et gradués dépendent :
Initiation du potentiel d'action :
Au repos, les canaux de fuites sont les mêmes que ceux qui sont perméables au potassium :
1. Dépolarisation jusqu'au potentiel seuil (V < V0) :
2. Potentiel seuil atteint (V = V0) :
3. Maximum de potentiel (V = V max ~ V d'équilibre du Na+) :
4. Repolarisation vers un niveau de repos :
5. Mais…
6. D'où l'apparition d'une hyperpolarisation transitoire (V < V0).
Un 2e stimulus ne pourrait pas déclencher un 2e potentiel d'action. Lorsque la membrane s'est dépolarisée, il faut attendre un certain temps avant qu'elle puisse de nouveau subir une dépolarisation. Cette absence d'excitabilité est due au grand nombre de canaux sodium encore inactivés : même si un stimulus provoquait leur ouverture, ils sont encore bloqués.
C'est la période qui se produit juste après la période absolue… C'est un intervalle de temps (1 à 15 ms) durant lequel un stimulus ne déclencherait plus un potentiel d'action sauf si celui-ci est supérieur à la normale. 7. Retour de V à sa valeur de repos
8. Retour des concentrations ioniques à leur valeur initiale
Lorsqu'un potentiel d'action apparaît à un endroit donné de l'axone, la portion voisine qui lui a donné naissance entre en période réfractaire, ce qui l'empêche d'être excitée à son tour. Cette période réfractaire est expliquée par la désensibilisation des canaux sodiques dépendant du voltage.
En revanche la portion voisine qui n'a pas encore présenté de potentiel d'action commence à être excitée. Cette excitation provient de petits courants électriques très locaux qui s'établissent entre portion excitée et portion non encore excitée. De proche en proche, se créent donc les conditions de naissance d'un potentiel d'action à côté de la portion qui est en train de réaliser un potentiel d'action (propagation régénérative).
Ainsi, la période réfractaire explique l'unidirectionalité de l'influx nerveux, depuis le cône d'émergence jusqu'à ses extrémités, les terminaisons synaptiques.
L'influx nerveux conserve toutes ses caractéristiques (amplitude, fréquence) durant sa progression : il est conservatif.
La conduction peut se faire soit de proche en proche le long de l'axone lorsque ce dernier est nu, soit de manière saltatoire lorsque l'axone possède une gaine de myéline. La myéline est maintenue autour de l'axone par les cellules de Schwann pour les neurones du système nerveux périphérique (ensemble des nerfs) et par les oligodendrocytes pour les neurones du système nerveux central (encéphale + moelle épinière), et chacune de ces cellules est séparée de ses deux voisines par un petit espace appelé nœud de Ranvier : l'influx nerveux saute alors (origine étymologique de saltatoire) de nœud de Ranvier en nœud de Ranvier, car la myéline joue le rôle d'isolant électrique ce qui permet une conduction beaucoup plus rapide (jusqu'à plus de 100 m/s, au lieu d'environ 1 m/s).
Les potentiels d'action dans le système nerveux sont très souvent couplés de telle façon que ce n'est plus leur profil (amplitude, durée, etc.) qui importe mais les rythmes qu'ils suivent dans leurs émissions, leur fréquence, et le codage de l'information nerveuse se fait par cette fréquence.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.