Loading AI tools
champ de la physique qui traite de la structure et le comportement des noyaux atomiques De Wikipédia, l'encyclopédie libre
La physique nucléaire est la science qui a pour objet l'étude du noyau atomique et des interactions dont il est le siège[1], c'est-à-dire l'étude du noyau atomique en tant que tel (par l'élaboration d'un modèle théorique décrivant son état fondamental, ses différents modes d'excitation et de désexcitation)[2], mais aussi de la façon dont il interagit avec des particules chargées électriquement comme le proton ou les électrons, ou avec d'autres noyaux atomiques[3]. La physique nucléaire expérimentale étudie des phénomènes très énergétiques (les énergies mises en jeu vont de la fraction de MeV à plusieurs GeV) et très localisés dans l'espace (l'ordre de grandeur des distances est 10−14 m). Après un bref résumé historique, cet article se consacre à décrire :
Pratiqué par |
Physicien ou physicienne nucléaire (d) |
---|---|
Objet |
La matière est constituée de molécules, de cristaux ou d'ions, eux-mêmes constitués d'atomes. Ces atomes sont formés d'un noyau central entouré par un nuage électronique. La physique nucléaire est la science qui s'intéresse à l'ensemble des phénomènes physiques faisant intervenir le noyau atomique. En raison de la taille microscopique de celui-ci, les outils mathématiques utilisés s'inscrivent essentiellement dans le cadre du formalisme de la mécanique quantique[1].
Le noyau atomique est constitué de nucléons, qui se répartissent en protons et en neutrons. Les protons sont des particules qui possèdent une charge électrique élémentaire positive, alors que les neutrons sont des particules neutres. Ils n'ont qu'un moment magnétique, et ne sont donc que peu sensibles au champ électromagnétique, contrairement aux protons. Si l'on assimilait le noyau atomique à une sphère dure, le rayon de cette sphère serait de quelques fermis, un fermi valant 10−15 mètre (un fermi = un femtomètre). Les noyaux possédant la même valeur de Z, c'est-à-dire le même nombre de protons, et n'ayant pas le même nombre de neutrons, sont appelés « isotopes »[1].
Jusqu'au tournant du XXe siècle, on a cru que les atomes étaient les constituants ultimes de la matière. La découverte de la radioactivité en 1896 par Henri Becquerel et les études qui suivirent, en particulier par les époux Curie, commencèrent de suggérer que les atomes étaient peut-être eux-mêmes des objets composés. Cela expliquait que la matière puisse émettre spontanément des particules comme dans le cas de la radioactivité alpha[4].
C'est en 1911 que Rutherford découvrit que les atomes semblaient effectivement être des objets composés. En analysant la diffusion de particules alpha émises par une source radioactive à travers une feuille d'or, il en vint à conclure que « le plus simple semble de supposer que l'atome contient une charge [électrique] centrale distribuée dans un volume très petit » (« it seems simplest to suppose that the atom contains a central charge distributed through a very small volume… »)[5]. Le modèle de Rutherford de l'atome était donc un noyau central possédant une charge électrique entouré par des électrons maintenus en orbite par l'interaction électromagnétique. Il avait déjà été proposé en 1904 par Hantarō Nagaoka[4].
En 1919, Rutherford, toujours, découvre l'existence dans le noyau du proton, particule possédant une charge positive élémentaire e, mais possédant une masse beaucoup plus grande que celle de l'électron (qui, lui, a une charge électrique élémentaire négative). En 1932, Chadwick met en évidence l'existence du neutron, particule très semblable au proton, hormis le fait qu'il ne possède pas de charge électrique (d'où son nom). À la même époque, Heisenberg propose que le noyau atomique est en fait constitué d'un ensemble de protons et de neutrons[4].
En 1932, Leó Szilárd suppose de possibles réactions nucléaires en chaine donnant de l'énergie thermique. En 1934, Enrico Fermi débute par la notion d'interaction faible, ce qui sera la théorie finalisée en 1970 de l'interaction élémentaire applicable à la cinétique des neutrons, la stabilité du noyau atomique et ce qu'on appelle maintenant la « réaction nucléaire ». Cette physique sort de la physique classique, traduisant sans discontinuité des énergies pour entrer dans la physique quantique, c'est-à-dire des énergies faibles mais à valeurs discontinues[4].
L'interaction qui maintient la cohésion des nucléons au sein du noyau résulte de l'interaction nucléaire forte qui lie les quarks dans le nucléon. L'interaction nucléaire forte est la plus intense des quatre forces fondamentales de la nature (d'où son nom) ; elle est à très courte portée, ce qui assure la forte cohésion des nucléons ; on peut les considérer comme des particules élémentaires (ignorer leur structure interne) dans un large domaine d'énergie (jusqu'au GeV)[2].
Le résidu de cette interaction se fait sentir à l'extérieur des nucléons : fortement répulsive jusqu'à un fermi où elle devient fortement attractive, elle décroit ensuite exponentiellement (voir la figure pour une configuration de spin particulière). Les protons étant des particules chargées, ils interagissent également via l'interaction coulombienne. Si le nombre de protons dans le noyau est important, cette dernière prend le pas sur l'interaction forte et les noyaux deviennent instables. La quantité d'énergie qui assure la cohésion du noyau est appelée énergie de liaison du noyau[2].
Une réaction est dite nucléaire lorsqu'il y a modification de l'état quantique du noyau. Participent alors à la réaction les nucléons constituant le noyau, mais également d'autres particules, tels les électrons e–, les positrons e+...
Les réactions nucléaires peuvent être de plusieurs types[3]. Les plus importantes modifient la composition du noyau et sont donc aussi des transmutations ; dans la nature, on observe :
Avec l'arrivée des accélérateurs de particules et de noyaux lourds (A > 8), de nouveaux types de réactions ont été étudiés[3] :
D'autres interactions ne modifient pas la composition du noyau, mais lui transfèrent de l'énergie d'excitation :
La nucléosynthèse explique la fabrication dans l'Univers des divers noyaux qui le constituent actuellement. Trois processus bien distincts sont cependant nécessaires pour expliquer l'abondance des différents éléments chimiques dans l'univers.
Dans une première phase, lors du Big Bang, sont formés à partir de l'hydrogène les noyaux de 2D, 3He, 4He et 7Li. Aucun élément plus lourd n'est synthétisé, car cette phase est relativement courte.
Cependant, pour former des éléments plus lourds que le lithium, il est nécessaire d'avoir recours à une réaction faisant intervenir trois noyaux d'hélium, dite réaction triple alpha. Ce type de réaction est extrêmement difficile à réaliser et ne peut se faire que sur des périodes beaucoup plus longues que les quelques minutes de la nucléosynthèse primordiale. La suite de la nucléosynthèse s'est ainsi produit au cœur des étoiles. On parle alors de nucléosynthèse stellaire. Celle-ci se scinde d'ailleurs en deux procédés : la nucléosynthèse lente, ayant lieu dans les étoiles, qui permet de synthétiser les éléments plus légers que le fer, puis la nucléosynthèse explosive, produite uniquement lors des explosions d'étoiles, appelées supernovae.
La spallation est un processus qui survient lorsqu'un noyau atomique frappé par un particule incidente ou une onde électro-magnétique de grande énergie se décompose en particules ou atomes plus petits.
La médecine nucléaire repose sur l'utilisation de sources radioactives et de l'interaction de ces sources avec les tissus humains. Cette interaction est exploitée à des fins de diagnostic (radiologie par exemple) ou de traitement (radiothérapie). À partir des années 1980 se sont développées les techniques d'imagerie par résonance magnétique nucléaire (IRM) qui font appel aux propriétés magnétiques des noyaux.
La production d'énergie nucléaire peut avoir deux origines : la fission d'un noyau lourd (famille des actinides comme l'uranium) ou la fusion de noyaux légers (de type deutérium, tritium).
La production d'énergie peut être :
Actuellement, les industriels ne peuvent exploiter que l'énergie qui provient de la fission des noyaux lourds. L'énergie est ensuite utilisée :
L'utilisation de la fusion à des fins de production d'énergie civile n'est pas encore maîtrisée. Sa maîtrise est l'objet du projet international ITER.
L'irradiation des aliments par des rayonnements ionisants (électrons, rayons γ ou X) vise à réduire le nombre de micro-organismes qu'ils contiennent. C'est une technique parfois contestée, qui est l'objet de règlements spécifiques, très variables selon les pays.
Le principe est d'irradier un objet, sous flux neutronique, dans le but de créer des produits d'activations qui sont des radioisotopes formés à partir des éléments présents dans la matrice à analyser. Chaque radioisotope émet des raies X/gamma qui lui sont caractéristiques. En fonction de l'intensité des raies émises, il est possible de remonter à la composition initiale, dans des proportions nettement inférieures à celles d'une analyse chimique : alors que le ppm (partie par million) est typiquement la limite basse d'une concentration issue d'une mesure chimique, il est possible d'atteindre, avec l'analyse par activation, des concentrations allant jusqu'à 10−12.
Les techniques radiologiques pour le contrôle non destructif reposent sur le même principe que les techniques d'imageries utilisées en médecine, mais les sources de rayonnement sont plus intenses et ont un spectre plus « dur » du fait des épaisseurs et de la nature de la matière (acier…) à traverser.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.