Loading AI tools
classe de complexité De Wikipédia, l'encyclopédie libre
En informatique théorique, plus précisément en théorie de la complexité, NL est une classe de complexité. Cette classe est aussi appelée NLogSpace[réf. nécessaire]. C'est l'ensemble des problèmes de décision qui peuvent être décidés par des machines de Turing non déterministes dont l'espace de travail est borné par une fonction logarithmique.
Si l'on appelle , l'ensemble des problèmes de décision qui peuvent être décidés par des machines de Turing non déterministes utilisant un espace pour une fonction en la taille de l'entrée , alors on définit [1].
Un problème A est NL-dur si tout problème de NL se réduit en espace logarithmique à A. Un problème est NL-complet s'il est dans NL et NL-dur.
Le problème de l'accessibilité (aussi appelé s-t-accessibilité) qui consiste, étant donné un graphe orienté G, et deux sommets s et t de G, à déterminer s'il y a un chemin de s à t dans G, est NL-complet. Dans ce problème, le graphe est représenté explicitement, avec une matrice d'adjacence ou avec des listes d'adjacences.
Voici d'autres problèmes de décision NL-complets :
En 1976, Neil D. Jones, Y. Edmund Lien et William T. Laaser propose des démonstrations de NL-complétude pour plusieurs problèmes[7], à l'instar des problèmes de Karp pour la NP-complétude.
La classe NL est une classe relativement petite parmi les classes usuelles. On a notamment NL P.
Comme pour toutes les classes, la variante non déterministe contient la version déterministe, c'est-à-dire que L NL. Au , l'autre sens NL L est un problème ouvert. Un autre résultat est donné par le théorème de Savitch[8] :
Théorème de Savitch —
Un autre résultat est le théorème dû à Neil Immerman[9] et Róbert Szelepcsényi[10] indépendamment :
Théorème d'Immerman-Szelepcsényi — , pour toute fonction , en particulier NL=co-NL
La classe NL est incluse dans NC, même plus précisément dans NC2[11]. Pour le démontrer, on construit un circuit de taille polynomiale et de profondeur polylogarithmique pour le problème d'accessibilité qui est NL-complet. On montre aussi que la classe NC est stable par réduction logarithmique.
Une définition par certificat est aussi possible, comme pour NP. Les contraintes à ajouter sont les suivantes : le vérificateur est unidirectionnel, c'est-à-dire que la tête de lecture ne peut pas revenir en arrière, et il travaille en espace logarithmique[12].
En complexité descriptive, NL correspond à la logique du premier ordre avec fermeture transitive[13].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.