Loading AI tools
De Wikipédia, l'encyclopédie libre
L’inégalité de Le Cam[1], due à Lucien Le Cam, précise la rapidité de convergence de la loi de la somme d'un grand nombre de variables de Bernoulli indépendantes de petit paramètre vers la loi de Poisson. Sa démonstration, élégante et peu calculatoire, illustre la méthode de couplage popularisée par Wolfgang Döblin.
Soit un tableau de variables aléatoires de Bernoulli indépendantes, avec paramètres respectifs On note
Alors
Inégalité de Le Cam — Pour tout ensemble A d'entiers naturels,
En particulier, Sn suit approximativement la loi de Poisson de paramètre λ dès que les deux conditions suivantes sont réunies :
En effet, l'inégalité de Le Cam entraine que :
Posons
On a les inégalités :
donc les deux conditions et apparaissant à la section précédente, entrainent que
Les deux conditions et sont souvent reformulées informellement de la manière suivante :
Paradigme de Poisson — La somme Sn d'un grand nombre de variables de Bernoulli indépendantes de petit paramètre suit approximativement la loi de Poisson de paramètre
L'idée est d'exhiber une loi de probabilité μp, sur le plan, dont la première marginale est une loi de Bernoulli, la seconde une loi de Poisson, toutes deux d'espérance p, telle que le poids de la première bissectrice soit maximal. En d'autres termes, il s'agit de construire, sur un espace probabilisé bien choisi, deux variables aléatoires réelles X et Y, X suivant la loi de Bernoulli de paramètre p, Y suivant la loi de Poisson de paramètre p, de sorte que soit minimal, ou, du moins, suffisamment petit, μp étant alors la loi jointe du couple (X,Y). Il est clair que
donc que
Dans le cas Poisson-Bernoulli, cette borne est atteinte en utilisant le théorème de la réciproque, de manière à construire X et Y sur l'intervalle ]0,1[ muni de la mesure de Lebesgue[3]. Ainsi
alors que
En ce cas, X et Y coïncident sur les intervalles :
Les deux variables diffèrent sur le complémentaire de la réunion de ces deux intervalles, i.e. sur [1-p,1[ \ [e-p,(1+p)e-p[. Ainsi,
et
On se donne une suite de variables aléatoires indépendantes à valeurs dans le plan, telle que la loi de probabilité de chaque terme de la suite est On note et les deux coordonnées de et on pose
Ainsi :
On a
et, en échangeant le rôle de Wn et celui de Sn ,
Par ailleurs, comme
on en déduit que
Finalement
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.