Loading AI tools
rapport entre l'activité d'un radioisotope dans un échantillon et le nombre de noyaux présents De Wikipédia, l'encyclopédie libre
La constante de désintégration (ou constante radioactive) d'un radioisotope est le rapport entre l'activité d'un échantillon[alpha 1] et le nombre d'atomes du radioisotope présents dans l'échantillon :
Ce rapport est caractéristique de chaque radioisotope, et ne dépend en général d'aucun autre paramètre (composition chimique, état physique, température, pression, etc.) sauf marginalement dans certains cas[1]. L'activité A étant le nombre de désintégrations par unité de temps et N le nombre d'atomes, la constante de désintégration se mesure en inverses d'unité de temps, très généralement en s–1.
La probabilité qu'un noyau radioactif se désintègre ne dépend de rien d'autre que du temps qui passe. La probabilité dP pour qu'un noyau présent à l'instant t ait disparu à l'instant t + dt, où dt désigne une durée infinitésimale, est proportionnelle à dt. La constante de désintégration n'est autre que la constante de proportionnalité :
Le nombre N de noyaux présents dans un échantillon macroscopique étant toujours extrêmement grand, le nombre de ces noyaux qui disparaissent pendant la durée dt est égal à N dP, or c'est aussi A dt d'après la définition de l'activité : on retrouve la relation A = λ N.
En première approximation, la constante de désintégration est une constante propre à l'isotope ; c'est d'ailleurs en observant ce fait qu'Henri Becquerel a compris que la radioactivité était un phénomène atomique et non pas chimique[2]. Il existe cependant des phénomènes affectant légèrement la valeur de la constante.
La constante radioactive varie faiblement mais approximativement linéairement avec la pression[1]. Ainsi à une pression de 108 Pa la variation relative de la constante radioactive du béryllium 7 est environ de 0,0022 %[1][Quoi ?]. Ce phénomène a été utilisé pour estimer des pressions élevées[1].
L'activité étant définie par où t désigne le temps, la constante de désintégration vérifie la relation , d'où l'on déduit la loi de décroissance radioactive où N0 désigne le nombre d'atomes initialement présents (c.-à-d., présents à l'instant t = 0). D'après la définition de la période radioactive (ou demi-vie) T, temps au bout duquel , on voit que :
Dans cette formule le numérateur est une constante mathématique valant environ 0,693147 (sans dimension).
Certains isotopes font concurremment l'objet de plusieurs (deux, le plus souvent) modes de désintégration radioactive différents. Le potassium 40, par exemple, peut se transformer en calcium 40 par désintégration β− et en argon 40 par capture électronique[alpha 2]. Chaque mode de désintégration est alors caractérisé par une constante de désintégration propre, qu'on peut définir à partir du taux de production des isotopes-fils.
Si un radioisotope P peut se transformer en l'isotope F1 par un premier mode de désintégration et en l'isotope F2 par un second, les taux de production des isotopes-fils sont tous deux proportionnels au nombre d'atomes du père : et , où , et désignent les nombres d'atomes du père et des deux fils. Les constantes radioactives des deux modes de désintégration sont respectivement λ1 et λ2. La somme des deux taux de production est égale au taux de destruction du père :
d'où l'on déduit aisément que les constantes radioactives s'ajoutent :
Ce résultat est cohérent avec l'interprétation probabiliste : la désintégration selon un mode et la désintégration selon un autre mode sont deux processus aléatoires indépendants l'un de l'autre, la probabilité pour qu'un noyau se désintègre par l'un ou l'autre de ces processus est la somme des deux probabilités.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.