Cercle de Spieker

De Wikipédia, l'encyclopédie libre

Cercle de Spieker

En géométrie, le cercle de Spieker désigne le cercle inscrit dans le triangle médian d'un triangle donné. Son nom vient du mathématicien du XIXe siècle Theodor Spieker. Le centre de ce cercle, appelé centre de Spieker, ou point de Spieker, est également le centre de gravité de la ligne polygonale homogène formée par les trois côtés (contrairement au centre de gravité du triangle qui est l'isobarycentre des sommets et aussi le centre de masse de la plaque triangulaire). Le centre de Spieker est aussi le point de concours des trois droites du triangle qui séparent le périmètre en deux parties égales et passant par le milieu d'un des côtés.

Thumb
En bleu, le cercle de Spieker du triangle ABC construit à partir du triangle médian.

Le cercle de Spieker est également lié au point de Nagel du triangle : c'est le cercle inscrit du triangle constitué par les trois points milieux entre le point de Nagel et les sommets du triangle.

Le rayon de ce cercle vaut la moitié du rayon du cercle inscrit dans le triangle d'origine.

Le centre de Spieker (Sp) est aligné avec le centre du cercle inscrit (I), le centre de gravité (G) et le point de Nagel (Na) du triangle :

Références

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Spieker circle » (voir la liste des auteurs).
  • Roger A. Johnson, Modern Geometry, Boston, Houghton Mifflin, Dover reprint, 1960.
  • Kimberling, Clark, « Triangle centers and central triangles », Congressus Numerantium, vol. 129, , i-xxv, 1–295

Liens externes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.