Loading AI tools
De Wikipédia, l'encyclopédie libre
L'effet d'échelle traite des conséquences physiques venant de la modification de la dimension d'un corps ou plus généralement d'une grandeur physique.
L'effet d'échelle s'applique aux produits fabriqués par l'homme, mais également au monde vivant et à la physique en général. Quand la modification est une homothétie, les proportions sont conservées.
L'effet d'échelle se manifeste notamment dans le domaine de l'économie, lorsque l'accroissement des volumes de production autorisée par la division du travail engendre des économies au sens où les modèles économiques classiques l'entendent. On parle alors d'économie d'échelle.
Cependant, au-delà d'une certaine limite, la loi des rendements décroissants montre que l'effet d'échelle ne joue plus comme une économie, mais comme un coût supplémentaire.
La longueur varie en L, l'aire en L2, le volume en L3. Quand on double la dimension d'un corps :
La flexion amène des contraintes de traction et de compression qui dépendent de la section de la poutre :
Pour une poutre de section carrée dont la hauteur est égale au dixième de la longueur, on aura :
Si on double la longueur de la poutre, la contrainte est multipliée par 2.
Les insectes sont petits et limités en taille par leur système respiratoire, qui se fait par des trachées parcourant l'intérieur de leur corps. Pour une teneur donné d'oxygène dans l'air, ce système respiratoire ne permet pas des échanges gazeux plus performants, car il est principalement passif. Au delà de quelques centimètres, le corps interne d'un insecte ne serait presque plus oxygéné, limitant fortement leur taille maximale.
Les vertébrés ont pu acquérir des bien plus grandes tailles, car leurs différents systèmes respiratoires alliés à leur circulation sanguine sont bien plus efficaces et donc ne limitaient pas leur taille comme dans le cas des insectes. Leurs tailles sont limités par d'autres facteurs, essentiellement des contraintes de poids sur leur squelette.
Le gros animal a un rapport surface de peau / masse cent fois plus faible.
Nos deux animaux sont à sang chaud. Supposons une même température extérieure, inférieure à celle du corps. Le petit animal qui présente une surface de peau (de déperdition thermique) 100 fois plus forte (ramenée à sa masse) va dépenser proportionnellement 100 fois plus d'énergie pour maintenir sa température. À mode de vie comparable (activité physique, température ambiante), il va devoir manger 100 fois plus (par rapport à son poids, toujours).
Les oiseaux sont des animaux à sang chaud, de densités voisines, à motorisation et carburant comparables (muscles, oxygène et glucose apportés par le sang). Quand la taille augmente, la masse augmente plus vite que la surface. Le coefficient de portance de l'aile variant peu, la vitesse minimale de vol augmente avec la taille. Un oiseau 4 fois plus grand devra voler au minimum 2 fois plus vite. Les plus petits oiseaux peuvent générer une portance suffisante par un battement d'ailes à haute fréquence, mais les efforts d'inertie liés à la taille obligent les oiseaux plus grands à réduire cette fréquence. Ils doivent courir au sol face au vent ou perdre de l'altitude pour atteindre leur vitesse minimale de vol.
Un pavillon isolé présente beaucoup plus de surface d'échange rapportée à son volume qu'un gros immeuble. Par exemple :
Comme vu plus haut, si on double la longueur d'une poutre, la contrainte de traction/compression dans le matériau est multipliée par 2. Cependant, cette relation est vraie si on considère que la section augmente en même temps que la portée. Dans la pratique, on arrive vite à des limites : une poutre de 10m de long aurait une section de 1m x 1m. Cela devient compliqué à mettre en œuvre au niveau du poids de la poutre.
Il a fallu l'invention de la voûte (qui fait travailler le matériau en compression et non plus en flexion) pour augmenter les longueurs de portée et autoriser la construction de ponts en pierre au lieu de bois.
On ne peut augmenter indéfiniment la hauteur d'un édifice en pierre. Il y a une limite, celle où la pierre située à la base de la construction s'écrase sous le poids propre du bâtiment. Le travail d'allègement des parties hautes des cathédrales répond à cette exigence. Le projet académique d'une tour de 300 mètres en pierre qui était proposé à la place de la tour métallique de Gustave Eiffel aurait posé de très sérieux problèmes de faisabilité, pour le bâtiment lui-même, sa tenue au vent et aussi pour ses fondations en bordure de Seine. Le plus haut bâtiment en pierre serait l'Obélisque de Washington, 169 m de hauteur, achevée en 1885.
Des effets d'échelle ont été observés dans les interactions sol-structures. Ainsi, dans des conduits karstiques rectiligne, le coefficient de dispersion est sujet à un effet d’échelle, jusqu’à une certaine distance au-delà duquel s'applique le processus classique fickien de dispersion, caractérisé par un coefficient de dispersion constant[1].
L'effet d'échelle détermine en partie le rendement énergétique du transport.
Comparaison automobiles / autocars. À vitesse constante, la traînée totale dépend de la traînée aérodynamique et de la traînée de roulement.
Si le car transporte 30 personnes et la voiture 2, on une surface de traînée par personne de 0,13 m2 dans l'autocar au lieu de 0,30 m2 dans la voiture, malgré l'aérodynamique beaucoup moins profilée du car. La surface frontale, qui est déterminante, augmente moins vite que le volume disponible pour les passagers.
Sous l'effet du vent, le voilier gîte (il penche). L'état d'équilibre est obtenu quand le moment inclinant est égal au moment de redressement. Pour une force de vent donnée :
La stabilité augmente avec L4 / L3 = L. Elle augmente avec le facteur d'échelle : une maquette de voilier au 1/10 est 10 fois moins stable que le réel. Pour corriger, le modèle réduit doit être davantage lesté que le réel. Les voiliers modèles réduits de compétition (Classe M, longueur 1,27 m) ne sont pas des maquettes de voiliers réels. Ils ont des tirants d'eau (bras de levier du lest) plus que doublés et sont très fortement lestés (torpilles de plomb). Les rapports de lest/déplacement sont beaucoup plus forts qu'au réel (75 % au lieu de 30 %).
La traînée (résistance à l'avancement) d'un navire dépend de sa surface de frottement avec la mer et de sa traînée de vague.
Quand la vitesse reste constante, plus le navire est grand, plus le système de vagues généré par la coque est réduit, plus le coefficient de traînée de vague est faible.
L'effet d'échelle agit directement sur le bilan de traînée et donc sur le rendement économique : les grands navires (pétroliers, porte-conteneurs) sont les plus économes.
Résistance relative au poids (R / Delta), à la vitesse de croisière :
Les modèles de bassin sont à échelle réduite : la facteur d'échelle est souvent supérieur à 10 ou 20. Les plus grands bassins, comme le B-600 de la DGA à Val-de-Reuil (545 m de long) permettent de passer des modèles jusqu'à 10 m de long, soit le 1/20 d'un bâtiment de 200 m de longueur. Des bassins plus petits, comme celui de l'École centrale de Nantes, longueur 200 m, permettent de passer des modèles de 2 à 3 mètres de long. Le facteur d'échelle peut alors dépasser 50. Les ratios surface/volume du modèle et du réel sont alors très différents, et la décomposition des traînées mesurées l'est également : la traînée de frottement (surface mouillée) est plus importante au bassin.
La traînée mesurée au bassin est une traînée totale Rtot = traînée de frottement (liée à la surface) + traînée de vague (liée au volume).
La surface mouillée en dynamique étant différente de la surface mouillée statique, il y a là une source d'erreur, spécialement dans le cas des navires rapides :
Des essais d'optimisation de forme, d'assiette, d'appendices peuvent donner un avantage au bassin que l'on ne retrouvera pas forcément au réel.
Problème des appendices et des petites surfaces portantes (foils): les coefficients de frottement sont très différents entre le modèle et le réel, à cause de la laminarité qui peut être totale sur le modèle (très faible traînée) et de la rugosité beaucoup plus forte au réel. Ces problèmes de laminarité peuvent être réduit par l'ajout de stimulateur de turbulence sur les maquettes.
Particulièrement en mécanique des fluides, les essais portant sur des engins de grandes dimensions (navires, avions, etc.) sont effectués à petite échelle. Plus le facteur d'échelle est important, plus la répartition des différentes traînées (frottement, vague) diffère entre le modèle et le réel; l'expression effet d'échelle prend un sens précis.
Par exemple, dans l'étude d'un écoulement autour d'un obstacle le sillage doit comporter, à l'échelle près, le même système d'ondes, de tourbillons ou de turbulence sur le modèle et sur le prototype. Dire que les phénomènes sont semblables revient à dire que certains invariants doivent être conservés lorsqu'on change d'échelle. Ces invariants sont donc des nombres sans dimension qui doivent être construits à partir des grandeurs dimensionnelles qui caractérisent le phénomène (pour plus de précisions, voir Similitude des modèles réduits).
Parmi ces nombres sans dimension, certains sont des rapports de longueurs : leur conservation caractérise la similitude géométrique qui n'appelle pas de commentaires particuliers. Seuls ceux qui font intervenir des grandeurs physiques présentent ici un intérêt.
Dans certains problèmes, on peut admettre qu'un seul nombre sans dimension doit être conservé. En aérodynamique, c'est assez souvent le cas du nombre de Mach aux vitesses assez grandes pour que la compressibilité de l'air ne soit plus négligeable.
Les conditions de similitude peuvent être incompatibles. Ainsi, lors du déplacement d'une maquette de navire, il faudrait en principe conserver simultanément :
Une inspection rapide des formules montre qu'une réduction de l'échelle devrait, dans ces conditions, s'accompagner à la fois :
Dans l'impossibilité de calculer théoriquement ou précisément la traînée de vague (c'est justement pour cela que l'on effectue des essais en bassin), on respecte la similitude de Froude et on calcule la résistance de frottement théorique en tenant compte de l'échelle. Quand le facteur d'échelle est important, toute imprécision du calcul du frottement (surface mouillée effective, vitesse locale plus élevée que la vitesse d'avance, rugosité, étendue de la laminarité plus ou moins bien connues) se traduit par une imprécision encore plus élevée de la résistance de vague car elle sera extrapolée au cube de l'échelle. Plus le modèle se rapproche de la taille réelle, plus les calculs sont précis. C'est cela qui a conduit à la réalisation de bassins d'essais de grandes dimensions (plus de 500 m de longueur).
Si on augmente la taille d'un avion, la masse augmentant plus vite que la surface, la charge alaire (F/S en newtons par mètre carré) augmente.
À coefficient de portance (Cz) identique, il faut en théorie augmenter la vitesse de vol : V devrait suivre la racine du facteur d'échelle : l'avion deux fois plus gros devrait voler 1.4 fois plus vite.
L'avion plus grand ne sera plus un simple agrandissement du plus petit : rapportée à son fuselage, son aile sera plus grande.
La vitesse finale (stabilisée) est atteinte quand le poids (la masse soumise à la gravité) équilibre le freinage aérodynamique de l'air (qui est lié à la surface frontale).
Cloches, fréquence sonore directement reliée à la taille. Idem diapason, instruments à cordes (violon aigus-violoncelle graves), instruments à vent, orgues.
Résistances de frottement rapportée au volume (à la cylindrée), nombre de cylindres, rendement spécifique.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.