Critère d'irréductibilité de Cohn

De Wikipédia, l'encyclopédie libre

En arithmétique des polynômes, le critère d'irréductibilité de Cohn est une condition suffisante pour qu'un polynôme à coefficients entiers soit irréductible.

Énoncé

Résumé
Contexte

Si un nombre premier p s'écrit en base dix sous la forme

alors le polynôme

est irréductible dans .

Ce théorème se généralise à d'autres bases : Pour tout entier b ≥ 2, un polynôme de la formeest irréductible dans dès que P(b) est premier.

Notes historiques

Résumé
Contexte

La version en base 10 est attribuée à Arthur Cohn[1] – un étudiant d'Issai Schur[2] – par Pólya et Szegő[3] et sa généralisation à une base quelconque b ≥ 2 est due à Brillhart, Filaseta et Odlyzko[4].

En 2002, M. Ram Murty a donné une preuve simplifiée ainsi que des détails historiques sur ce théorème[5], démontrant également la variante suivante : Soit et . S'il existe un entier bH + 2 tel que P(b) est premier, alors P est irréductible sur ℤ.

Notes et références

Articles connexes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.